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As an activity at the end of a busy school day, Mrs. White
asked her Grade 3 students to count how many triangles
were in the following figure: 

One group of students appeared to agree that the number
of triangles was 32, another group counted 27.  The teacher,
though she had not yet counted herself, immediately knew
that both answers were incorrect. How did she know? 

In this article, we analyse the specific mathematical
knowledge of teachers such as Mrs. White that emerges in
response to students’ activity or inquiry. Later in the article,
we discuss the particular knowledge acquired by Mrs. White
during her undergraduate studies that informed and guided
her response in this teaching situation. This example, as well
as several others we discuss, sheds new light on the famil-
iar question of which mathematical knowledge is useful and
important for teaching. Our focus is on teachers’ mathemat-
ical knowledge beyond the school curriculum and, in
particular, on mathematics learnt during undergraduate stud-
ies. We explore what such knowledge may contribute to
teaching in terms of relevant subject matter, as well as how
such knowledge can shape interaction with students. We
introduce a new perspective to the on-going discussions
around mathematics for teaching by considering what may
lie at the horizon of teachers’ mathematical knowledge.

Horizon knowledge – conceived
Mathematical knowledge of teachers and mathematical
knowledge in teaching has attracted wide attention in recent
mathematics education research (e.g., Adler & Ball, 2009;
Davis & Simmt, 2006; Sowder, 2007). One explicit catego-
rization of teachers’ knowledge was introduced by Ball and
colleagues (Hill, Ball & Schilling, 2008). It was referred to as
“mathematical knowledge for teaching” and presented as an

extension of Shulman’s (1986) classical categorizations of
Pedagogical Content Knowledge (PCK) and Subject Matter
Knowledge (SMK). The oval diagram that introduced sub-
categories of PCK and SMK is often referred to as “the egg”. 

Hill et al.’s (2008) refinement of Pedagogical Content
Knowledge included: 

• Knowledge of Content and Students, 

• Knowledge of Content and Teaching, and 

• Knowledge of Curriculum.  

Their refinement of Subject Matter Knowledge included: 

• Common Content Knowledge, 

• Specialized Content Knowledge, and 

• Knowledge at the Mathematical Horizon. 

This latter category of knowledge at the mathematical hori-
zon has attracted our attention and is of interest in this paper.  

To our surprise we found out that while Hill et al.
explained or defined the majority of what their “egg dia-
gram” categories entailed, there was no explanation of what
they meant by mathematical horizon. We started to construct
our own meaning of this term. Searching through other
related publications, we found the following: “Horizon
knowledge is an awareness of how mathematical topics are
related over the span of mathematics included in the curricu-
lum” (Ball, Thames & Phelps, 2008, p. 403). We wondered
how this subcategory of SMK may be different from the sub-
category of PCK called “knowledge of curriculum”. Further,
the notion of horizon knowledge was referenced in Ball
(1993), an article that indeed demonstrates the teacher’s
awareness of what might be future needs of her students, but
precedes the work on knowledge categorization.  

While working on conceptualizing our view of horizon
knowledge we came across more recent work by Ball and Bass
– in conference presentations [1] and conference proceedings
– that explicitly attends to the notion of horizon knowledge: 

We define horizon knowledge as an awareness – more
as an experienced and appreciative tourist than as a tour
guide – of the large mathematical landscape in which
the present experience and instruction is situated. It
engages those aspects of the mathematics that, while
perhaps not contained in the curriculum, are nonethe-
less useful to pupils’ present learning, that illuminate
and confer a comprehensible sense of the larger signif-
icance of what may be only partially revealed in the
mathematics of the moment (Ball & Bass, 2009, p. 5).
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Figure 1. How many triangles?
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Ball and Bass (2009, p. 5) further describe their concep-
tion of horizon knowledge as consisting of four elements: 

1. A sense of the mathematical environment sur-
rounding the current “location” in instruction

2. Major disciplinary ideas and structures

3. Key mathematical practices

4. Core mathematical values and sensibilities.

However, considering the specific examples provided by Ball
and Bass (2009), we see an appropriate fit with the subtitle of
their paper: “Knowing mathematics for teaching to learners’
mathematical futures” as well as with their claim that “teach-
ing can be more skilful when teachers have mathematical
perspective on what lies in all directions, behind as well as
ahead, for their pupils, that can serve to orient their naviga-
tion of the territory” (p. 12). That is, while attending to
teachers’ mathematical knowledge, they appear to focus on
learners’ horizons. But what about the teachers’ horizons?

Teachers’ horizon knowledge is, for us, deeply connected
to their knowledge of advanced (university or college level)
mathematics. In this paper we extend the idea of knowledge
at the mathematical horizon by focusing on the teacher and
exemplifying what teachers’ knowledge “beyond school cur-
riculum” can bring to teaching. Some of these examples are
based on our personal experiences, while others are
excerpted from conversations with teachers.  

Horizon knowledge – extended
Our notion of knowledge at the mathematical horizon
(KMH) is related to what Zazkis and Leikin (2010) defined
as advanced mathematical knowledge (AMK). Acknowl-
edging that different curricula exist at different times and in
different parts of the world, they defined advanced mathe-
matical knowledge as “knowledge of the subject matter
acquired during undergraduate studies at colleges or uni-
versities” (p. 1). We consider application of advanced
mathematical knowledge in a teaching situation as an instan-
tiation of teachers’ knowledge at the mathematical horizon.
More explicitly, a teacher’s use of the mathematical subject
matter knowledge acquired in undergraduate studies is rec-
ognized as an instantiation of knowledge at the
mathematical horizon when such knowledge is applied to a
secondary or elementary school teaching situation. 

Our view is influenced by the metaphorical definition of
horizon as a place “where the land appears to meet the sky”.
We interpret this as the place where advanced mathematical
knowledge of a teacher (the sky) appears to meet mathemat-
ical knowledge reflected in school mathematical content (the
land). Or, following Felix Klein, it is an advanced perspective
on elementary mathematics that is applicable to teaching. 

Broader philosophical views of horizon also influence our
understanding. In particular, Husserl’s notions of inner and
outer horizon (Follesdal, 2003) resonate with our description
of mathematical horizon as the place where advanced math-
ematical knowledge meets school curriculum. According to
Husserl, when an individual attends to an object, his or her
focus centres on the object itself, while in the peripheral of
the object lies the rest of the world. As such, the horizon of

an object, which includes all the features in the peripheral,
may be partitioned into an “inner horizon” and an “outer
horizon”. Briefly, Husserl’s notion of inner horizon corre-
sponds to aspects of an object that are not at the focus of
attention but that are also intended. For example, if we were
to consider the chair on which one sits, we might attend to its
leather back, its swivel motion, the height of its arm rests,
etc. The inner horizon would thus include all of the other
aspects of “chair” that are outside of our focus, either
because they are taken for granted, or because they are not
yet within our awareness. Such features of “chair” might
include the fact that it is for sitting on, or that it is an “office
chair” and not a recliner or lounge chair, or that if one were
to lean too far back in it one might fall over. In contrast, the
outer horizon of an object includes features which are not
in themselves aspects of the object, but which are connected
to the world in which the object exists. Considering the
chair, its outer horizon would include, for instance, the class
of objects (furniture) designed for sitting upon.  

Further, we can interpret inner and outer horizons of a
mathematical object. For example, if we consider the graph of
the function y = 2x2 + 3 and attend to its shape (a “stretched”
parabola) and its location on the plane (with vertex at (0, 3),
contained in quadrants I and IV), then the inner horizon would
include all of the aspects of the graph of y = 2x2 + 3 that are
outside of our focus. Such features would include the fact
that y = 2x2 + 3 has no real roots, that it is symmetric (about 
x = 0), that it is a specific example of a polynomial function
with even degree, or that it is differentiable. In contrast, the
outer horizon of an object includes features which are not in
themselves aspects of the object, but which are connected to the
world in which the object exists. With respect to y = 2x2 + 3, its
outer horizon includes, for example, the set of conic sections,
and the set of functions that are differentiable, even, or con-
cave up. Additionally, the outer horizon of a mathematical
object includes much more than generalisations of the specific
features exemplified by the object. It also includes the con-
nections between different disciplinary strands and contexts in
which the object may exist. In the case of the parabola, there
is a connection between its existence in, for example, a cal-
culus context and a geometry context. Differentiability and
concavity, symmetry and evenness, are features of the
“worlds” of both geometry and calculus and, as such, the con-
nection between the two contexts exists as a feature of the
outer horizon of the parabola. 

To reiterate, within Husserl’s interpretation, an object’s
inner horizon is composed of specific features of the object
itself and includes the attributes of the object that lie in the
periphery of our focus. In particular, what exists in the inner
horizon of an object is dependent on our choice of focus as
we attend to that object. For instance, if we attend to a
graph’s location and vertex, then other attributes, such as
its symmetry, become “out of focus” and thus exist as
aspects of the graph’s inner horizon. If we were instead to
attend to the graph’s symmetry, then its specific location in
our coordinate system might fade to the periphery of our
focus and, as such, would become part of the graph’s inner
horizon. In contrast, it is not the particular features of the
object which encompass its outer horizon, but rather features
that are connected to the object and that embed it in a greater
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structure. The outer horizon represents the “greater world”
in which an object exists. It is independent of focus and con-
sists of the generalities which are exemplified in the
particular object. Thus, while symmetry of the graph would
lie in its inner horizon, all possible symmetries of all possi-
ble graphs would lie in its outer horizon. 

Following the metaphorical and philosophical views of
horizon, what encompasses the horizon depends on where
one stands. That is, the higher one stands, the farther away
the horizon is and the more it encompasses. Consequently,
that which is “on the horizon” for one person, say a student,
may be within reach for another, the teacher. 

Subsequently, a teacher’s knowledge at the mathematical
horizon includes features in both the inner and outer horizons
of an object, while only some of those features are accessi-
ble to students. The horizon being “farther away” for the
teacher enables him or her to see more features and attrib-
utes of an object, and to gain a more in-depth appreciation for
what exists in the outer world. We see a connection here with
Ball and Bass’s (2009) description of knowledge at the math-
ematical horizon as “a kind of peripheral vision” (p. 5),
which is in accord with our interpretation of inner horizon
and, in particular, with their second element of horizon,
major disciplinary ideas and structures, which we interpret as
part of the outer horizon. In other words, we view major dis-
ciplinary ideas and structures as features of the world in
which an object exists, yet which are not in and of themselves
features of the object. It is here that we focus much of our
attention and analysis, though we acknowledge that Husserl’s
notions of inner and outer horizons encompass much more
than our specific implementation or interpretation does.

In summary, we suggest it is teachers’ advanced mathe-
matical knowledge which allow them a “higher” stance and
broader view of the horizon with respect to the specific fea-
tures of the object itself (inner horizon) and with respect to the
major disciplinary ideas and structures (Ball and Bass’s sec-
ond element) occupying the world in which the object exists
(outer horizon). With this in mind, in what follows we provide
several examples of knowledge at the mathematical horizon in
specific situations of teaching elementary and secondary
school mathematics. These examples focus on the teacher and
his or her response to students’ work and questions, with the
aim of illustrating different, possibly unexpected ways that
knowledge beyond the school curriculum can influence a
teacher’s pedagogical choices in the moment.

Horizon in teaching elementary school math-
ematics

Example 1

In the introductory example of the counting activity used
by Mrs. White in her Grade 3 (ages 8-9) class, the students
were counting without any specified system or organized
approach and it was not altogether surprising to find incon-
sistent answers. The teacher, though she had not yet
determined the number of triangles herself, immediately
knew that both answers were incorrect. She recognized rota-
tional symmetry of order 5 in the figure and, as such, she
knew that the number of triangles should be a multiple of 5.

With this understanding in mind, she helped students iden-
tify different kinds of triangles and where, with each
triangle-shape found, there were 5 of the same kind. She
led students to catalogue different shapes and account for
them systematically. What was intended initially as an activ-
ity for the last few minutes of a school day turned to
purposeful work of identifying congruent shapes.  

The ideas of symmetry and divisibility appear briefly in
elementary school mathematics. However, it was during her
university course “Mathematics for Elementary Teachers”,
taken as part of her teacher education program, that Mrs.
White acquired an understanding of rotational symmetry and
its order. As a result, she was able to make a connection to
divisibility, which we consider an example of her knowledge
at the mathematical horizon. The rotational symmetry of
the figure, though not the focus of the activity, was recog-
nized by Mrs. White and so was an accessible aspect of her
inner horizon. The connection between the symmetry of the
figure and divisibility are features of the outer horizon. This
horizon knowledge was implemented in her teaching by
directing students toward systematic counting and catalogu-
ing of different shapes, which can be viewed as
instantiations of the third element of Ball and Bass’s (2009)
interpretation of horizon – key mathematical practices. 

Example 2

Mr. Green’s Grade 5 (ages 10-11) students were learning
about factors and multiples. As one of the tasks, he asked the
students to identify all the factors of the number 180.
Observing the method by which the students were listing
factors – sporadically, in order, by pairs – provided him with
insight into his students’ understanding. He planned to have
a discussion about efficient ways of finding all the factors.  

Before completing the list, Mr. Green made a note for
himself that the number of factors should be 18. Without
identifying what was missing on his students’ lists, he sug-
gested to several of them to keep looking for more, while
asking others to explain why they believed their list was
complete. The fact that 180 has 18 factors was knowledge
acquired by Mr. Green while taking a discrete mathematics
course at college. He recognized the prime factorization of
180 as 22 × 32 × 5 and, based on the fundamental principle
of counting, concluded that the number of factors was 
3 × 3 × 2 = 18. (If p appears with exponent k in the prime
factorization of n, then there are k+1 possible exponents of p
in a factor of n, which are 0, 1, …, k.) Mr. Green did not
intend to teach his students the fundamental principle of
counting at this time. However, this knowledge at the math-
ematical horizon related to a major disciplinary idea and
structure of numbers, which we interpret as a feature of the
outer horizon, helped him in guiding instruction on identi-
fying factors. 

Horizon in teaching secondary school math-
ematics

Example 3

Miss Mauve’s Grade 12 (ages 17-18) students had just
finished a unit on inverse functions. In her students’ work,

FLM 31(2) - June 2011_FLM  09/06/11  6:05 PM  Page 10



Miss Mauve observed several instances of confusion in
notation which led, among other errors, to miscalculations.
Some of her students were writing 1/f(x) where they meant
f -1(x) and she suspected that students were unclear as to
when the reciprocal of a function was, or was not, also its
inverse. She concluded that students’ inappropriate use of
notation was a misgeneralization of previous work with neg-
ative exponents, where, for example, 3-1 was defined as ⅓.

Miss Mauve decided to spend time clarifying this confu-
sion. She referred to students’ experiences with the
reciprocal and inverse of numbers, noting that the recipro-
cal of a number depends on the operation of multiplication,
but that the inverse of a number can refer to its additive
inverse or its multiplicative inverse (the latter is referred to
as the reciprocal). It was during a university course in group
theory that Miss Mauve acquired an understanding of the
inverse of a group element with respect to the particular
operation of that group, a major disciplinary idea of mathe-
matics, which is an aspect of the outer horizon when
considering functions.  Miss Mauve used this knowledge at
the mathematical horizon to help her address her students’
confusion and was able to make the idea of inverse with
respect to an operation accessible to students without using
the terminology of group theory. Her appreciation of group
structure and her understanding of its relevance to the spe-
cific case of inverse functions are examples of her
knowledge at the mathematical horizon, while her explana-
tion in terms accessible to students speaks to her
pedagogical content knowledge. A similar instance of con-
fusion and resolution was reported in Zazkis and Zazkis
(2011), where a teacher used her understanding of group the-
ory to help her student interpret the meaning of an exponent
of negative one in different contexts.

Example 4

During a lesson on applications of derivatives, Mrs. Vio-
let’s pre-calculus students were given a set of problems in
which they were to calculate derivatives of various func-
tions. The lesson was designed to reinforce calculation
techniques through application to standard word problems.
The students were unfamiliar with limits, as it was not part
of the course curriculum.

As the class worked on their exercises, one student
noticed when working with the sphere and circle, that the
derivative of the volume formula yielded the formula for
surface area and the derivative of the area formula yielded
the formula for circumference. That is,   
and                             . After class, the student stayed behind
to ask why this relationship held for the sphere and the circle
and not in other cases such as with the cube and square.

The connection between surface area and volume is one
that Mrs. Violet made during a university calculus course.
She recalled a geometric representation for the derivative of
the area of a circle and was aware of an analogous argument
for the derivative of a sphere’s volume. Mrs. Violet under-
stood the significance of the diagram shown in Figure 2 and
knew that the derivative of the area is defined as:

Here,                        is the difference in area between the
circle with radius r + h and the circle with radius r, that is,
the area of the ring of width h around the circle with radius
r. The change in this difference approaches the circumfer-
ence of the inner circle as h approaches zero. Similarly, the
derivative for the volume is defined as:

Though constructing a frame of width h around a square
does not work out as nicely as a ring of width h around a
circle, Mrs. Violet was able to refine the diagram in order
to get the desired outcome. From her diagram, shown in Fig-
ure 2, the similarity with the cases of a circle and a sphere
is clear: 

In this refinement of Mrs. Violet’s, w is equal to half the
length of one side, and as such, the perimeter of the square is
4(2w) = 8w. The derivative of the area of the square can
thus be written as:

Similarly, the derivative of the volume of the cube can be
expressed as:

where                      gives the surface area of a cube with
side length 2w.

While it was beyond the scope of the lesson to introduce
the definition and calculation of limits to the student, Mrs.
Violet used her knowledge of limits to give an intuitive and
geometric explanation for why this relationship holds. Her
explanation used the above diagrams to illustrate derivative
as a rate of change that relates area to the shape’s boundary
and focused on an analogy between a circle’s radius and the

11

Figure 2. A geometric representation for the derivative of
the area of a circle. 

Figure 3. A geometric representation for the derivative of
the area of a square.
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length denoted as w. Particular attention was paid to what
changes in the case of the square or cube, noting that in the
familiar case it is the length of one side which is taken as
the variable, rather than half the length as is the case with
Mrs. Violet’s analogy. It was knowledge of mathematics
acquired in her university studies that heightened Mrs. Vio-
let’s awareness of the important observations her student had
made and of the potential connections that might result. In
particular, the connection between calculus and geometry –
an aspect of the outer horizon of derivative and an element
of Mrs. Violet’s knowledge at the mathematical horizon –
gave the teacher insight regarding her student’s curiosity.
This connection was paramount for illustrating for her stu-
dent the relationship between area and perimeter (as well as
volume and surface area), a major disciplinary idea and
hence also a feature of the outer horizon. 

Interestingly, access to features of the outer horizon was
made available despite side-stepping an explanation of lim-
its. The definition of limit, which Mrs. Violet drew on for her
own understanding, is a specific feature of derivatives that
exists outside the focus of the particular question and so is an
aspect of its inner horizon. While there is an important con-
nection between the inner and outer horizon of derivatives as
they relate to the interpretation of limits, it was features of
the outer horizon which were deemed to be more accessible
to the student. Setting derivatives in the broader world of
geometric interpretations of calculus gave access to new
information regarding the relationships between volume and
surface area, area and perimeter, and the corresponding com-
putations.

How can knowledge at the mathematical hori-
zon be acquired?
In providing their perspective on horizon knowledge, Ball
and Bass (2009) commented that “we do not know how hori-
zon knowledge can be helpfully acquired and developed” (p.
11). What we have exemplified above suggests one neces-
sary (though not sufficient) requirement for the development
of knowledge at the mathematical horizon: engaging in
learning mathematics. This requirement is consistent with
Watson’s claims that teachers’ own mathematical studies
may impact their teaching practice. Watson (2008) suggests
that experience in mathematics at an advanced level, both
in terms of concepts and combining concepts, in addition to
analyzing complex mathematical statements to uncover
familiar structures, are useful and important aspects of
teacher education that lend themselves to effective pedagog-
ical decisions. Similarly, Potari et al. (2007) found that rich
personal subject knowledge corresponded to greater ease
and effectiveness in interpreting and developing students’
ideas. In the examples presented above, teachers’ knowledge
at the mathematical horizon included both an advanced
understanding of specific concepts learned at university
(inner horizon), but also a broader understanding of the con-
nections between concepts (outer horizon). 

While teaching is unimaginable without subject matter
knowledge, there is no agreement on what depth or breadth
of knowledge is essential. Begle’s (1979) classic research
that showed that learning more mathematics, as identified by
the number of courses taken, is not sufficient for successful

teaching. However, “not sufficient” is often misinterpreted
as “not essential”. The infamous example of Ms. Daniels
(Borko et al., 1992) – a teacher who was exempt from a
course on teaching mathematics because she had completed
a calculus course but who could not explain correctly divi-
sion by a fraction – provided a rationale for more extended
training in mathematical instruction. Of course, we have
nothing against the necessity of extended training in mathe-
matical instruction. However, had Ms. Daniels (or her clone)
taken a course in abstract algebra, she would have likely
enhanced her understanding in the following manner: that
division is not a separate operation but a reference to multi-
plication by an inverse, and that “flipping” the numerator
and denominator of a fraction creates an inverse element to
an original fraction. She would also then be able to connect
the idea of inverse to division by zero: division by zero is
undefined because zero has no multiplicative inverse. Such
a group-theoretic perspective enables a teacher to put two
problematic issues in elementary mathematics – division by
zero and division by a fraction – under the same umbrella
and so enhance personal understanding. This perspective
may not be conveyed to elementary school students but, in
our view, it is an example of horizon knowledge, as orga-
nized in a disciplinary structure. 

Indeed, the relevance of a group-theoretic perspective can
be seen in the above examples, one of which explicitly refers
to group theory (example 3), while another refers to group
theory implicitly (cyclical group of order 5 in example 1).
We see this as a very profound instantiation of the second
component of knowledge at the mathematical horizon iden-
tified by Ball and Bass (2009) – major disciplinary ideas and
structures. It is not surprising that group theory appears in
our examples, as it provides structure for the main concepts
of school mathematics: numbers and functions. Such a struc-
tural understanding also fosters an understanding of
connections across disciplinary ideas, a subtle issue that is
brought to light through our examples.

Conclusion
We agree with Watson (2008) that extended experiences in
learning mathematics “is a good way to deepen and develop
mathematical knowledge in and for teaching” (p. 7). While
many avenues are possible for such “extended experiences”
we suggest that undergraduate courses in mathematics pro-
vide a natural one. The four examples presented in this article
illustrate how teachers’ knowledge beyond school curricu-
lum, specifically the subject matter knowledge acquired in
colleges and universities, can contribute to teachers’ instruc-
tional choices and be potentially beneficial for students’
learning. We considered the application of such knowledge
(previously referred to as AMK) as an instantiation of teach-
ers’ knowledge at the mathematical horizon (KMH). As such,
we have extended the scope of “horizon knowledge”, a term
previously coined by Ball and Bass (2009). 

Although we have no intention to measure knowledge at
the mathematical horizon, we find it – from the refined per-
spective provided here – useful to exemplify particular
applications of extended knowledge of the subject, or
advanced mathematical knowledge, in teaching situations.
Although related to the work of Ball and Bass (2009), our
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notion of knowledge at the mathematical horizon differs
from what they describe as “a kind of elementary perspec-
tive on advanced knowledge” (p. 10). Rather, we see it as
an advanced perspective on elementary knowledge, that is,
as advanced mathematical knowledge in terms of concepts
(inner horizon), connections between concepts (outer hori-
zon), and major disciplinary ideas and structures (outer
horizon) applied to ideas in the elementary school or sec-
ondary school curriculum. 

Notes
[1] For example, slides of a presentation by Ball and Bass presented at the
National Council of Teachers of Mathematics Annual Meeting, Washington
D.C., April 23, 2009, available from: www-personal.umich.edu/~dball/pre-
sentations/index.html
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Can we use symmetry as a vehicle to teach certain aspects of problem solving, and if so, should
we? In what ways can an understanding of symmetry in general (not merely in geometry) assist
in the learning of mathematics?
(David Robitaille, FLM 4(3), p. 26)

Hypothesis: The breadth of extent […] of a person’s mathematical knowledge is directly
related to experience with mathematical variations. A person using a variation-rich environ-
ment will have a more extensive mathematical knowledge (within a given general area) than
one who has not had such experiences.
(Thomas Kieren FLM 4(1), p. 43)

How can I discern the extent of generality perceived by someone else when looking at a par-
ticular case of what I see as a generic example?
(John Mason, FLM 4(3), pp. 24-25)

Is it possible to offer a complete mathematics curriculum in terms of awareness?
(Dick Tahta, FLM 4(1), p. 47)
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