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   Take Away Points:  

     1.    Provides a brief introduction to physiological game evaluation.  
    2.    Discusses the bene fi ts and limitations of physiological measures for game 

evaluation.      

    26.1   Introduction 

 Do you remember insult sword fi ghting in Monkey Island? The moment when you 
got off the elevator in the fourth mission of Call of Duty: Modern Warfare 2? Your 
romantic love affair with Leliana or Alistair in Dragon Age? Dancing as Madison 
for Paco in his nightclub in Heavy Rain? Climbing and  fi ghting Cronos in God of 
War 3? Some of the most memorable moments from successful video games, have 
a strong emotional impact on us. It is only natural that game designers and user 
researchers are seeking methods to better understand the positive and negative emo-
tions that we feel when we are playing games. 

 While game metrics provide excellent methods and techniques to infer behavior 
from the interaction of the player in the virtual game world, they cannot infer or  see  
emotional signals of a player. Emotional signals are observable changes in the state 
of the human player, such as facial expressions, body posture, or physiological 
changes in the player’s body. The human eye can observe facial expression, ges-
tures or human sounds that could tell us how a player is feeling, but covert physi-
ological changes are only revealed to us when using sensor equipment, such as 
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 electroencephalographs (EEG), electromyographs (EMG), or galvanic skin response 
(GSR) recording systems. These player-focused body-related responses or physi-
ological metrics are at the heart of this chapter. 

    26.1.1   Limitations of this Chapter 

 This book chapter was written with two audience types in mind: user researchers 
and graduate students. My goal is to give a brief overview of the  fi eld of physiolog-
ical emotion research in games (more interesting as pointers for graduate students) 
as well as some how-tos for physiological recording (probably more useful for 
game user researchers). Keep in mind that this chapter cannot cover everything that 
you need to know about the background of recording physiological signals (Stern 
et al.  (  2001  )  is a better resource for this purpose) or give you all the information 
you will need to run physiological tests as a games user researcher. It is by nature 
a primer, something that hopefully gets you interested enough in physiological 
game research to start asking the right questions and look for the latest results in 
this growing  fi eld. 

 Figure  26.1  gives you an idea of the methods available for games user research 
and helps you locate at which part of the spectrum game metrics and physiological 
measures are (two of the more quantitative approaches available to game evaluators). 

  Fig. 26.1    An overview of game user research methods grouped together by similarity in a quanti-
tative or qualitative and objective or subjective focus based on Mandryk  (  2008  )        
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All of the methods mentioned in the  fi gure are possible options for evaluating the 
player experience in a game depending on where your focus lies. Game metrics 
together with self-reported data from questionnaires or interviews can provide an 
additional cross-reference to physiological measures, which are still largely lacking 
validations for their use in games. But before we get there, let us review the emo-
tional and physiological fundamentals for this type of games user research.    

    26.2   What Are Emotions? 

 Rosalind Picard mentions two types of signals in her “Affective Computing” book 
that need to be differentiated for emotion-recording systems: (1) expressive signals 
directly originating from a person and (2) non-expressive signals from environment 
and context of a person (Picard  1997  ) . A physiological recording, for example, will 
not necessarily be able to differentiate between these types of signals. This is a 
problem that is similar to “situational stereotypy” (Lacey  1959  ) , which is the idea 
that physiological responses depend on the experimental context. So, from a psy-
chological view, the context in which players experience their emotions is as impor-
tant as the game-related cues that trigger their emotions (for a player experience 
model that incorporates the idea of context see Engl and Nacke  2013  ) . Picard  (  1997  )  
notes that our expectations will in fl uence our emotional perception, meaning that 
our body responses are shaped by our mental ideas and vice versa. A player’s own 
mood and emotions will in fl uence their perceptions and cognitive processes (for an 
excellent review of how affective computing relates to psychological emotion litera-
ture, I recommend reading Calvo and D’Mello  (  2010  ) ). At this point, the boundaries 
between user experience research and emotion research start to blur (Brave and 
Nass  2002  ) . But let us keep the focus on emotions in the psychological sense for this 
introduction. So, where do we start, when we want to understand and distinguish 
emotions? 

 Emotion research is a huge  fi eld with journals such as  Emotion ,  Emotion Review , 
 Cognition and Emotion , or  IEEE Transactions on Affective Computing  at its heart, 
and the scope of this article forbids going into real depth here, but I want to give you 
some pointers about what the different views of emotions are. A general starting 
point for the interested emotion researcher are the following introductory articles: 
Kleinginna and Kleinginna  (  1981  ) , Panksepp  (  2004  ) , Bradley and Lang  (  2007  ) , 
Russell  (  2003  ) , Barrett  (  2006  ) , Barrett et al.  (  2007  ) , and Dalgleish et al.  (  2009  ) . Of 
course, for those wanting to go in depth in this  fi eld, there are also several compre-
hensive handbooks available, on emotions (Lewis et al.  2010  ) , on cognition and 
emotion (Dalgleish et al.  2000  ) , on psychophysiological research (Cacioppo et al. 
 2007  ) , on affective sciences (Davidson et al.  2003  ) , on emotion and the affective 
sciences (Sander and Scherer  2009  ) , and on emotion and mass media (Döveling 
et al.  2010  ) , just to name a few. Finally, you should consult some comprehensive 
books on affective computing (Picard  1997 ; Scherer et al.  2010 ; Gokcay and Yildirim 
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 2010 ; Pelachaud  2012  )  as well as affect and emotion (Panksepp  2004 ; Lane and 
Nadel  2002 ; Frijda  1986 ; Ekman and Davidson  1994  )  if you really want to get more 
familiar with the topic. By its nature, my overview is only brief and scratches the 
surface of more than a decade of emotion research. 

 There is no de fi nitive taxonomy for emotions and there are many different ways 
of classifying emotions. One of the oldest theories of emotion is the James-Lange 
theory, which states that our emotion follows from experiencing physiological 
change  fi rst (James  1884 ; Lange  1912  ) . According to this theory, when an outside 
event or object changes, it causes the physiological or visceral change, which then 
generates the emotional feeling. This theory has been challenged several times and 
continues to be criticized. 

 One of the  fi rst challengers was the Cannon-Bard theory, which offers an alter-
native sequence of emotion processing. After a feeling occurs, Cannon hypothesized 
that it triggers a behavior based on how the emotion is processed (Cannon  1927  ) . 
The emotional perception in fl uences the physiological reaction. How you think 
you feel will change your reaction to the feeling. This theory tries to account for a 
combination of high-level mental and low-level physiological responses when 
experiencing emotions. 

 Another emotional concept is the two-factor theory of emotions which is based 
on empirical observations (Schachter and Singer  1962  ) . This theory considers mental 
processing to have a large in fl uence on our individual interpretation of our body 
reactions to an event that caused them. According to Schachter, emotions stem from 
the interaction of two distinct factors: cognitive labeling and physiological arousal 
(Schachter  1964  ) . Cognitive processes provide the framework in which individual 
feelings are processed and labeled, giving the state of physiological arousal positive 
or negative values according to the situation and past experiences. LeDoux  (  1998  )  
provides an excellent overview of this in Chapter 3 of his book; speci fi cally, he 
discusses some of these theories and the pathways of interpretation from the causing 
event to the resulting feeling. 

 For those more interested in modern theories of emotion that take into account 
that emotional processes can happen without the resulting emotional experience, 
I recommend Damasio  (  1994  ) . It is also worth considering the multicomponent 
process emotion model (Scherer  1984  ) , which constitutes that an emotion processing 
system consists of the  fi ve distinct subsystems: information processing, support, 
executive, action, and monitoring. This model is rooted in appraisal theory (Lazarus 
 1968  ) , which denotes that emotional arousal from a stimulating event is ingrained 
in the meaning it has for the person perceiving it. Most studies regarding appraisal 
theory models of emotion have used verbal reports. This requires participants to 
engage in complex recall and imagination processes before they put their feelings 
into words. 

 To summarize, at the heart of most emotion theories are two basic concepts: 
(1) discrete emotional states and (2) dimensional (often biphasic) theories. Discrete 
emotional states date back to early ideas of the French philosopher René Descartes, 
who described basic emotions, such as joy, wonder, love, desire, hate and sadness. 
Later, Ekman  (  1972  )  would describe the appearance of the face for six distinct 
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emotions: surprise, fear, anger, disgust, sadness and happiness. A list that he extended 
later (Ekman  1992a,   b  ) . Other notable lists of discrete emotional states where con-
tributed by Izard  (  1972  )  and Plutchik  (  1980  ) . Plutchik also described a structural 
model of emotions (Plutchik  1991  )  has eight prototypic dimensions in horizontal 
(maximum intensity emotions at the top: ecstasy, acceptance, amazement, terror, 
grief, loathing, vigilance, rage) and vertical levels (lower located emotions are 
closer together and less intense). 

 While discrete emotions have a place in psychophysiology, they are often seen as 
broader concepts of underlying factors of a more affective nature, such as stimulus 1  
appraisal (Scherer  1984  ) , tendencies for action (Frijda  1986  ) , or emotional expres-
sion through facial muscles (Ekman  1972  ) . In psychophysiological research, dimen-
sional models of emotion are more commonly used to conceptualize emotional 
facets. The most common model is the two-dimensional valence-arousal circum-
plex model (Russell  1980  ) . The main criticism with this model is that the dimen-
sions are not completely bipolar (Larsen et al.  2001  ) , so alternative models were 
suggested, such as the positive activation and negative activation structure, that 
account for approach and withdrawal behavior (Watson et al.  1999  ) . In this vein, 
another theory of positivity (appetition) and negativity (aversion) is offered by 
Cacioppo et al.  (  1999  ) . In contrast to these newer models, early discussions of emo-
tions tended to be completely biphasic, distinguishing between good and bad, posi-
tive and negative, appetitive and aversive, or pleasant and unpleasant. Only recently 
are we beginning to understand the complexity of affective processes that are often 
a blend of positive and negative feelings. 

    26.2.1   How Game Metrics Relate to Psychophysiological 
Emotion Induction 

 Emotions in a psychophysiological context can be understood as connected physi-
ological and psychological affective processes, which can be induced by perception, 
imagination, anticipation, or action triggers (see Fig.  26.2 ). Perceptual emotions can 
be triggered by sensory information, such visual, acoustic, tactile, olfactory, or gus-
tatory signals (Bradley and Lang  2007  ) .  

 This distinction between emotional triggers is especially relevant when analyzing 
psychophysiological reactions together with game metrics. Only through the use of 
game logs that pinpoint exactly what game events were happening when, are we are 
able to contextualize physiological reactions of players (see Nacke et al.  (  2008  )  and 
Kivikangas et al.  (  2011b  )  for descriptions of a logging systems that used player 
interaction logs together with physiological responses). Finding out what cues in 
the game induce a physiological reaction can be done by logging game metrics and 
sending game events coded as voltage triggers directly to physiological hardware 

   1   A stimulus in psychological research is something (could be an event or an object) that evokes a 
body or mind response.  
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(Kivikangas et al.  2011b  ) . Alternatively, one can triangulate player and event logs 
with physiological data as long as they contain a timestamp that is synchronized 
with the physiological timestamp (a procedure which can be dif fi cult if several com-
puters are involved; in this case networked time synchronization is suggested). 
Other approaches include a “manual” correlation of the physiological data with 
player events using video data. Here, several videos (usually of the player’s face, an 
in-game capture, an event log, and physiological graphs) are watched after a player 
session and events of interest are identi fi ed and scored manually in physiological 
data processing software. We will talk more about triangulation and data storage 
procedures for physiological data later in this manuscript. Before we talk about 
detailed physiological recording procedures, we need to understand the  fi eld of 
psychophysiology.   

    26.3   What Is Psychophysiology? 

 Psychophysiology is a research  fi eld where body signals, so called physiological 
responses, are measured to understand what mental processes are connected to those 
bodily responses (see Darrow  1964 ; Andreassi  2006 ; Hugdahl  1995 ; Cacioppo et al. 
 2007  for more de fi nitions). I will refer to this as physiological metrics in this chapter. 
In this area of research, we are studying body signals to get an idea of what our mind 
was doing at that point. We are studying brain-behavior relationships that are guided 
by activity in the nervous systems (Hugdahl  1995  ) . This makes psychophysiology a 

  Fig. 26.2    Emotion inducers in the  fi eld of psychophysiology. Stimuli most often used in psy-
chophysiological experiments come from these contexts       
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useful tool for evaluating excitement, emotion, or mental workload in games by 
conducting experiments. However, one has to keep in mind that valid experimenta-
tion requires much caution and preparation. In physiological experimentation, we 
have to balance ecological validity of our experimental environment with possible 
distractions that need to be controlled for. 

 Most of our body responses are spontaneous. This means they are dif fi cult to 
fake, which makes physiological measures more objective than, for example, 
behavioral gameplay metrics, where a participant is able to fake doing an activity 
while cognitively engaging in another. One could say they allow the least biased 
assessment of how a player is reacting to gameplay actions compared to other 
game user research methods. They are also recorded continuously, meaning they 
do not interrupt a player’s gameplay session. Physiological metrics are vast amounts 
of data, which become meaningful only when analyzed using the correct context 
and correct signal processing procedures (Mandryk  2008 ; Nacke  2009  ) . For exam-
ple, as a game designer we want to create meaningful decisions that involve some 
tradeoff of game resources (e.g., resource trades, weighing risk against reward, and 
choosing an appropriate action) (Brathwaite and Schreiber  2008  ) . Here, emotional 
decisions can make playing games more fun. In these game decision situations, 
physiological metrics give you an objective way to assess a player’s emotional 
response. We can get an idea about the emotional state of a player based on physi-
ological metrics and this helps us inform game designers. In case of our example, 
we would know whether the designers have succeeded in causing an emotional 
response in the player with the decision options that they provided. However, again 
you have to keep in mind that this type of quantitative data has to be interpreted to 
make correct design suggestions, which leaves room for interpretation bias of the 
game user researcher. 

 Without a high level of experimental control, physiological data is volatile, vari-
able, and dif fi cult to interpret. For example, if a think-aloud protocol is applied 
when recording physiological metrics, a researcher risks in fl uencing heart rate and 
respiration. When interpreting physiological metrics, it is important to understand 
the relationship between what happens in your brain (the psychological effect or 
mental process) and what your body tells us (the physiological variables, such as 
EEG, EMG, EDA). Cacioppo et al.  (  2007  )  note that there are  fi ve general relations 
between mental processes and body responses that we need to understand. The fol-
lowing relationships are distinguished:

    • The one-to-one relationship.  One mental process is directly associated with one 
body response and vice versa. This type of relationship would allow you to iden-
tify a mental process based on a body response and it is rarely possible.  
   • The one-to-many relationship.  One mental process is associated with many 
body responses. Here, we cannot make draw a conclusion regarding mental 
processes.  
   • The many-to-one relationship.  Many mental processes are associated with the 
same body response. While this scenario is worse than a one-to-one relation, it is the 
one most often used in physiological evaluation. It allows us to make assumptions 
of mental processes based on a body response.  
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   • The many-to-many relationship . Many mental processes are associated with 
many body responses. Again, this type of relation does not allow for a conclusion 
of mental processes based on body responses.  
   • The null relationship . There is no relationship or association between mental 
processes and body responses.    

 The most common case in physiological evaluation is the many-to-one relation-
ship, where one body response may be associated with many mental effects or 
processes. Therefore, we must keep in mind that a direct mapping of a discrete 
emotional state is not possible (and it is debatable whether discrete emotional 
states even exist, although we will not touch on this discussion) and body responses 
must be understood as elements of sets with fuzzy boundaries. When we measure 
body signals, we are measuring essentially the operation and activity of muscles, 
nerve cells, and glands.  

    26.4   Physiological Response Metrics of Players 

 To understand how physiological measures work on the human body, we need to 
take a quick neurobiological look at how our bodily reactions are organized. On a 
macro level, bodily operations are controlled by our nervous system, which is split 
into two parts, the central nervous system (CNS) and the peripheral nervous system 
(PNS). The CNS consists of big brain (cerebrum), little brain (cerebellum), and 
spinal cord. It manages all the information received from the whole body and coor-
dinates body activity accordingly. The CNS is well protected by the skull and spine 
bones, which also makes it dif fi cult to access outside of the body. The PNS includes 
all nerve cells outside of the CNS. You could say that its main job is to connect the 
CNS to the rest of our body. To use an example from musical theater, you can imagine 
the CNS having the same functions as the conductor in a concert, whereas the PNS 
would be the orchestra. 

 Since most of our physical sensations are transmitted through the PNS, we are 
able to measure its reactions on our skin. The skin is the place where most physio-
logical sensors are applied. More on the micro level, the PNS is split into the somatic 
and the autonomic nervous system. It is enough to say here that the somatic nervous 
system regulates body activity that we have under conscious control such as deliberate 
movement directly through our muscles. The autonomic nervous system (ANS) is 
more exciting for physiological evaluation because it takes main care of our uncon-
scious, visceral responses. These responses are hard to get with classic game user 
research methods and physiological metrics can really shine here. In the ANS, just 
like in a good game, we have two opposing players, the sympathetic nervous system 
and the parasympathetic nervous system. The former is our emergency response 
system that triggers  fi ght or  fl ight reactions while the latter manages our relaxation, 
resting, and digesting. It is important to keep those two players in mind, when we 
look at how we measure emotion with physiological sensors. 
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 The PNS is particularly useful for measuring stimulation, but not so much when 
it comes to measuring emotion itself. However, by detecting slightest muscular 
movements in the face with physiological sensors, we are able to assess emotion 
based on facial expression. For example, a frowning face would express negative 
emotion, whereas a smiling face would express positive emotion. Both reactions 
will shows as spikes in the data of the physiological sensor that is applied to the 
corresponding region of the face. As game user researchers, we are also interested 
in feelings and the experience players are having when interacting with a game. 
Therefore, we cannot solely rely on physiological metrics for player testing, but we 
have to accompany them with questionnaires or other contextual recording tech-
niques (e.g., interviews, video observation, game metrics) to get a better idea of 
player experience. However, the basic tenet of physiological experimentation still 
holds true: we measure the physiological response (in addition to other subject 
responses) while manipulating a behavioural factor, often an element of gameplay. 
For an overview of recent game research studies that are investigating psychophysi-
ology in games, see Kivikangas et al.  (  2011a  ) . 

    26.4.1   Physiological Signal Processing Primer 

 Raw physiological signals, such as EEG and EMG (EDA is a bit different as we 
will note later), represent an assembly of positive and negative (i.e., an oscillating) 
electrical voltage. Important traits of a physiological signal are the frequency 
(number of oscillations) and their amplitude (maximum positive or negative voltage). 
An example of a raw psychophysiological signal can be seen in Fig.  26.3 .  
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  Fig. 26.3    Raw psychophysiological signal with a baseline offset (e.g., EMG)       
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 In a psychophysiological recording graph, we can see two dimensions. The 
abscissa shows the recording time (often ms) and the ordinate displays the ampli-
tude (often in  m V). Raw EMG signals, especially when the sensors are applied to 
larger muscle sites are characterised by activity bursts (when the muscle contracts) 
and baselines during the muscle resting periods. For facial EMG, the signal is not 
quite as distinguishable in experimental situations, since an alert participant is rarely 
completely relaxed and there is always some activity visible in the raw EMG 
(depending on the resolution and  fi lters of the recording hardware). Recording base-
line noise before exposure to an experimental stimulus and subtracting this from the 
signal is a common method used for removing unwanted noise from the recordings 
before starting to  fi lter the signal. When  fi rst looking at physiological signals, do not 
be surprised by seeing many negative numbers in your  fi rst recording (negative 
values are plotted upwards as a neurophysiological convention). Signal  fi ltering 
from the raw signal toward a normalized signal usually follows the following steps 
(Tassinary et al.  2000  ) :

    1.    Rectify the raw signal using a technique called RMS or root mean square, which 
equals the quadratic mean of a number. Applying an RMS transformation to the 
raw signal folds makes it easier to view and understand.  

    2.    Sometimes the physiological recording hardware (the so-called ampli fi er) already 
has a bandpass  fi lter (10–500 Hz) built in. If not, then at least for EMG signals a 
lowpass  fi lter of 500 Hz should be applied to remove noise from the ampli fi er 
hardware. The decision of whether to use a 10, 20 or 30 Hz high pass  fi lter 
depends on how much the researcher wants to attenuate weak signals (30 Hz gets 
rid of cross-talk and other noise such AC power). The 10–500 Hz bandpass  fi lter 
is suf fi cient for most EMG applications and can easily be implemented in 
MATLAB using a digital third order Butterworth bandstop  fi lter. For EEG data, 
using a smaller range between 1 and 40 Hz would be advisable depending on 
whether gamma frequencies (30–50 Hz) are used in the analysis. Since EEG 
analysis works on lower frequencies, a notch  fi lter can be applied as well to 
remove 60 Hz noise. 2   

    3.    Finally the signal is often smoothed using a moving window technique, where 
based on a time window de fi ned by the researcher data is averaged within the 
moving window. This often called moving average or average recti fi ed value.  

    4.    For EEG, a next step would be to calculate average power estimates with a Fast 
Fourier Transformation (FFT). Since most EEG analysis is more complicated 
and warrants a chapter of its own, we will not go into depth here.     

 Depending on what kind of statistical analysis is later done with the physiological 
signal, it can be logarithmically (log or ln) transformed to eliminate skew in the data 
distribution. The rest of the analysis is done depending on the experimental setup 
and using statistical methods. 

   2   50/60 Hz is the electrical energy frequency that can come from lights, power supplies and other 
devices in your experiment environment.  
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 When designing a games user research study that could involve physiological 
sensors, you have to pick wisely which sensors to use and whether to use sensors 
at all. Some game user research questions can be answered with other methods, 
depending on what you want to know about the user experience. Skin conduc-
tance level is correlated with psychological arousal (Prokasy and Raskin  1973  ) , 
but so are cardiovascular measures, such as blood volume pulse, higher heart 
rate, and respiration. If you wanted to look at mental effort and task load, you 
could resort to a subjective measure like the task load index (Hart and Staveland 
 1988  ) , look at multivariate EEG measures (Smith et al.  2001  ) , decreased heart 
rate variability, or more dilated pupils (using eye tracking technology), brow or 
jaw muscle activity (Waterink and van Boxtel  1994  ) . We will also later in this 
chapter talk about using facial EMG to asses positive or negative valence of emo-
tions to indicate whether a game action is perceived as positive or negative. With 
all these measures available and each of them using different signal processing, 
the task of choosing the right one might seem daunting at  fi rst. For people getting 
started with physiological measures, I recommend sticking to the basic skin con-
ductance and EMG measures presented in this chapter. 

 For some games sensors might be a better  fi t than others. In our experience, 
action games that produce a visceral experience are generally a good  fi t for 
physiological measures (Nacke  2009  ) . It remains to be shown whether this is a 
useful tool for casual games as well, since recent reports have yet to make 
a strong argument for the method in this context (Gualeni et al.  2012  ) . If you 
decide that physiological sensors are your method of choice for your games user 
research question, you should choose a sensor that will not alter the player 
experience through its application, but one that is sensible to the effects that you 
want to measure.  

    26.4.2   Electroencephalography (EEG) 

 There are many myths surrounding EEG as a measure of brainwave activity of the 
human body. Participants unfamiliar with this technique may assume that you are 
able to  fi nd out exactly what they are thinking or even get graphic representations of 
their thoughts. While recent research in the latter (i.e., reconstructing visuals from 
brain activity using magnetic resonance imaging [MRI]) has been impressive 
(Nishimoto et al.  2011  ) , the reality of EEG measures is a little bit more abstract than 
one might think. Compared to other techniques of analysing the CNS response, 
such as functional MRI or positron emission tomography (PET) scans, EEG, can be 
considered less invasive and easier to apply. The advantage of EEG for brain activity 
measurement over these other techniques is its millisecond resolution, which allows 
studying physiological responses in real time. A slight disadvantage of EEG to the 
other approaches is its spatial resolution, which is constrained, for example, by a 
low signal-to-noise ratio and limited spatial sampling. 
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  Example Experimental Protocol for Attaching EEG Electrodes    

     1.    When selecting or inviting participants for physiological studies that use 
surface electrodes such as EEG or EMG, it is a good idea to  screen par-
ticipants for hair growth . EEG usually has to be applied directly on the 
scalp (head skin surface) of the participant, the more hair a participant has, 
the more electrode gel you are likely to use. When using male participants 
for facial EMG, a beard might also be problematic when trying to apply the 
electrode directly to the skin. Adhesion is reduced when much or thick hair 
is present, especially when recording under humid conditions or with skin 
types prone for sweating. Also, no chewing gum for participants.  

    2.    Most dry electrodes do not require extensive  cleaning of the skin , although it 
is recommended for hygienic reasons to clean the skin before and after attach-
ing electrodes, but not with soap. A soft cleaning with an alcohol pad or 
conductive cleaning paste is usually suf fi cient for removing dead skin cells.  

    3.    If not using pre-gelled electrodes, the  electrode needs to be gelled  (or wet-
ted for some toy EEG devices) for optimal skin contact. EEG electrodes are 
often snapped into a cap that is worn (and needs to be correctly placed) on 
a participant’s head to ensure correct alignment of all electrodes.  

    4.    Depending on thickness of the electrode cables, having  surgical tape  on 
site is invaluable for making sure that the  cables  are closely  attached  to 
the participant and do no move around during recording.  

    5.    After the recording or experiment is done, the  electrodes need to be 
removed  from the participant as soon as possible to minimize discomfort.  

    6.    All  equipment  that was in contact with the participant needs to be  washed  
(sensor cap and straps) or thrown away (disposable electrodes).     

 In EEG, electrodes are placed on a participant’s head. Their location and alignment 
is standardized in the 10–20 system (Jasper  1958  )  (or the 10–10 EEG sensor place-
ment system (Chatrian et al.  1988  ) ). Often EEG systems ship with caps that take 
care of this alignment by having electrode inlets sewn into headgear that looks like 
a swimming cap. EEG measures slight electrical activity, such as the signals gener-
ated by neural activity in the brain. There is a wide range of different measurement 
devices available for this type of physiological measure, ranging from a more 
sophisticated medical grade headcap setup with large density electrode arrays (from 
32 to 256 electrodes) and simpler devices that have less electrodes and therefore less 
spatial accuracy but similar time accuracy. Some really cheap EEG devices sell for 
lower than $1,000 (e.g., Neurosky, Emotiv). Most of these devices compute affective 
and cognitive states such as attention, engagement, boredom, meditation, frustration, 
or long- and short-term excitement. Be aware that these computations are not openly 
available and they are mostly a black box for researchers. 

 EEG lets us record electrical activity on the head that relates to brain activity. 
We usually distinguish brain activity by using the amplitude and frequency of the 
signal in comparison to a reference location. Amplitude describes the size of the signal, 
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while frequency refers to the speed of signal cycles. EEG devices compute brain 
waves in different frequency bands, such as alpha (e.g. 8–13 Hz), beta (e.g. 13–30 Hz), 
theta (e.g. 4–8 Hz), delta (1–4 Hz), and sometimes gamma (30–50 Hz). 3  Alpha 
activity is associated with relaxation and lack of active cognitive processes; it has 
also been tied to information and visual processing. Beta activity is related to alert-
ness, attention, vigilance, and excitatory problem solving activities. Theta activity 
has been related to decreased alertness and lower information processing, however, 
frontal midline theta activity in the anterior cingulate cortex scalp area is linked to 
mental effort, attention, and stimulus processing. Delta is most prominent during 
sleep, relaxation or fatigue. Gamma activity is still largely unexplored. While these 
associations come from research in medicine and psychology, they make it easier to 
evaluate a game based on the EEG activity. For example, if you notice increased 
beta activity during gaming, it could be linked to player attention and increased 
arousal during a focused gaming task. 

 A major disadvantage of early EEG methods was the placement of the electrodes 
with gel. Many budget-type EEG devices got rid of the gel and have dry electrodes. 
This minimizes discomfort by providing a comfortable  fi t on the head. 

 EEG is dif fi cult or impossible to measure when there is movement involved. The 
electrodes might move on the head while the player is moving. This leads to arti-
facts in the EEG data. Therefore, some games are not very suited for EEG evalua-
tion (e.g., Guitar Hero, Kinect, or Wii games). Movement artifacts are a problem of 
all physiological measures, but are especially problematic with EEG as we are inter-
preting very low electromagnetic activity. It is important to apply proper  fi lters to 
your EEG data, so that no interferences are recorded in the EEG signal (e.g., often 
a 50/60 Hz notch  fi lter is used to exclude interference signals). 

 In addition, as with all physiological measures, EEG measures should be recorded 
with a baseline. For example, you could record this at the start of your session and let 
the player do nothing but stare at a cross on a grey background. This allows getting 
rid of the noise in your EEG signal. A  fi nal problem with EEG as a method is the 
dif fi cult interpretation of the data. For example, when delta activity is increased in a 
playing session, do we argue that the game is relaxing or that it is boring and fatigue-
inducing? It is quite important to keep one’s game design goals in mind when doing 
this type of evaluation. Relating this data with other measures is paramount for a 
solid interpretation. Table  26.1  shows the pros and cons of EEG.      

    26.4.3   Electromyography (EMG) 

 An EMG measures whether our muscles are active or not. Therefore an EMG 
electrode attached to the surface above a muscle is able to sense even the slightest 
activation of this muscle (Bradley et al.  2001 ; Lang  1995  ) . Whenever we  fl ex a 

   3   Another way of analysing EEG is through Event-Related Potentials or Mu Rhythm, which I do 
not cover in this chapter.  
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muscle on our body, this produces a difference in electrical activity or isometric 
tension which is measurable by EMG. While EEG measures activation in the CNS, 
EMG is all about measuring PNS activation. Since most muscles can be directly 
controlled, EMG is a measure of high interest for interacting with computers in a 
more natural way (Nacke et al.  2011  ) . 

 However, the most common use for evaluating games is through facial EMG 
(Fridlund and Cacioppo  1986  ) , which measures the activation of speci fi c facial 
muscles responsible for displaying our positive or negative reactions to an emotional 
moment in a game (Hazlett  2006  ) . In particular, physiological game research has 
focused on using brow (corrugator supercilii) to indicate negative emotion and cheek 
muscle (zygomaticus major) to indicate positive emotion (Mandryk et al.  2006  )  or 
even fun and  fl ow in a game (Nacke and Lindley  2008  ) . For longer term evaluation 
(say over a few minutes of gameplay), the eye muscle (orbicularis oculi) has also 
proven helpful in registering high arousal pleasant emotions (Ravaja et al.  2008  ) . 

 In game user research using facial EMG to assess emotions, we have recently 
found the threshold of the total signal average with added standard deviation 
(Hazlett  2008  )  helpful to identify signi fi cant positive and negative gameplay 
moments (see Fig.  26.4  for a visualization). Hazlett used this to calculate an EMG 
ratio for a game with the total time spend in brow muscle activation (negative) or 
cheek muscle activation (positive). In my research group, 4  we have used this positive 
and negative gameplay time measure together with video observation and biometric 
storyboards (Mirza-Babaei et al.  2012  )  to identify key positive and negative moments 
during gameplay. Combined with gameplay logs, we can correlate this negative and 
positive gameplay response time with behavioral events, such as button presses, 
navigational interactions and gameplay actions. We are working on automating this 
scoring process and are working on validating this procedure and making the tools 
available for the game industry. While this will not allow the  fi ne grained level of 
details that a mixed methods gameplay video analysis will provide, a gameplay 
metrics based scoring system that takes into account physiological responses will 
de fi nitely be useful for the game industry.  

 Similar to EEG, EMG uses silver-silver chloride electrodes (see Fig.  26.5 ) 
because they have only a small measurement error, little drift potential, and minimal 
polarization. EMG electrodes are applied to the surface of the skin and will also 

   Table 26.1    Pros and cons of measuring EEG   

 PRO  CON 

 Great time resolution  Low space resolution 
 Deep cognitive insights  Gel-based caps and conductivity 
 Quantitative data  Movement artifacts 
 Small system setup  Data needs proper  fi ltering 
 Different analyses possible with the same data set  Dif fi cult to interpret 

 Expensive 

   4     http://hcigames.businessandit.uoit.ca      

http://hcigames.businessandit.uoit.ca
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need a reference (if part of a larger system this reference can be on the head or close 
to the EMG electrodes). In measuring facial EMG one risk is to pick up muscle 
activity that is not related to the muscles that you would like to measure, such as 
cheek muscle for positive emotions or brow muscle for negative emotions. 5  In clinical 
settings, EMG electrodes might be placed under the skin surface to eliminate muscle 
interference, but these are not appropriate in a game user research setting. However, 
screening for facial hair is recommended, since body hair can cause interference 
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  Fig. 26.4    Example of a  fi ltered, smoothed and recti fi ed EMG graph, showing thresholds for EMG 
analysis. Hazlett  (  2008  )  suggested using a threshold of average (i.e., Mean) EMG Amplitude plus 
Standard Deviation for  fi nding positive measures       

  Fig. 26.5    An example of EMG electrodes (silver-silver chloride)       

   5   For example, participants in an experiment cannot chew gum, laugh, or talk during facial EMG, 
because this will introduce large artifacts in your EMG data.  
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with EMG signals. Since muscular signals are ampli fi ed from microvolts, careful 
signal processing has to be done on EMG data before it is interpreted. 6   

 Figure  26.6  shows how emotions are usually interpreted in psychophysiology on 
a two dimensional model (Russell  1980  ) . We  fi nd that by measuring these face 
muscles we are able to get an idea of pleasant or unpleasant emotions along one axis 
of this model. This is called emotional valence assessment as we are able to show 
whether an emotion was evaluated by a player as pleasant or unpleasant.  

 While facial recognition software or direct observation would also allow the 
analysis of facial expressions and therefore the mapping on emotions, the software 
or the observer often miss less salient expressions, which are picked up by physio-
logical measures. See Table  26.2  for pros and cons of EMG.  

  Fig. 26.6    Two emotion dimensions (valence and arousal) in the circumplex model from Russell 
 (  1980  )        

   Table 26.2    Pros and cons of measuring EMG   

 PRO  CON 

 Great time resolution  Muscle and movement interference 
 Best way to measure emotion  Data needs proper  fi ltering 
 Quantitative data  Electrode placement in the face 
 Easy signal analysis  Dif fi cult to get a natural measurement 
 More precision than face cameras  Expensive 

   6   The usual processing procedure is signal smoothing (often at half of the recording frequency, for 
example 0.5 s at 2 kHz recordings), baseline subtraction, and sometimes a logarithmic normaliza-
tion. Depending on the system, an additional bandpass  fi lter (high: 10Hz, low: 400Hz) or a 
Butterworth lowpass  fi lter of 500Hz are necessary.  
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 The analysis of EMG signals is straightforward, as usually after application of 
some  fi lters, we are already able to compare the signals. More activity on the cheek 
muscle relates to positive emotion, more activity on the brow muscle relates to 
negative emotion. However, EMG measures in the face of a player mean that there 
are electrodes attached to the player’s face while playing, which make this measure 
intrusive although often the electrodes and cables can be easily taped to the player’s 
head to remove discomfort and reduce movement artifacts. One thing to keep in 
mind is that just by feeling the electrode on their face, players might be feeling the 
need to elicit more pronounced muscle movements when playing. This might lead 
to unnatural signals, which could make data interpretation more dif fi cult (if no video 
recording is available to check for this problem).  

    26.4.4   Electrodermal Activity (EDA) 

 EDA relates to how excited we are when we are exposed to a stimulus, such as playing 
a game. When measuring the skin conductance level (SCL) over time, we refer to this 
as measuring the EDA of the skin (see Fig.  26.7 ), but when measuring the direct 
response to an event, we call this galvanic skin response (Boucsein  1992  ) . In any case, 
EDA measures changes in the passive electrical conductivity of the skin relating to 
increases or decreases in sweat gland activity. These  fl uctuations are caused by a per-
son getting aroused by something that they see or do.  
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  Fig. 26.7    A skin conductance level (SCL) graph for an example EDA recording. The  upper graph  
shows the raw skin conductance level measured in  m S sampled at 32 Hz over a total time of ~513 s 
(16,415 samples) together with the total average SCL as well as total minimum and total maximum. 
The  second graph  shows a normalized version of the skin conductance level based on the equation 
described below       
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 Most of us have seen EDA measures in movies branded as lie detector tests. 
EDA measures are attached to the  fi ngers, palms or toes because the sweat glands 
in those body areas are more likely to react to changes in the PNS (sympathetic vs. 
parasympathetic activity). Since we are measuring the differences in conductivity, 
we only need two electrodes, which make EDA a very easy physiological measure 
to prepare and apply. EDA electrodes are prone to movement artifacts just like 
other psychophysiological measures, but because of their location (hand or feet) 
special care has to be taken in the preparation of steering controls of the game. If a 
regular game controller is used and the EDA sensor is applied on the palm of the 
hand, movement artifacts are likely to occur, so using the feet or  fi ngers of the non-
dominant hand would be a better location (or the side of the palm of the hand). 
EDA is also very easy to interpret, since it almost has a one-to-one relationship 
with physical arousal. However, individuals are different in their SCL, so a com-
parison between people is only possible with normalized data. SCL can be normal-
ized by calculating each sample as a percentage of the entire span of EDA, using 
the min and max values over all samples for one participant (Mandryk  2008 ; 
Lykken and Venables  1971  ) . The equation below shows how to normalize your 
SCL data at any point in time ( SCL  

 now 
 ) as a percentage, given that you know the 

maximum ( SCL  
 max 

 ) and minimum ( SCL  
 min 

 ) value of your EDA data.

     
100now min

normalized
max min

SCL SCL
SCL

SCL SCL

−
= ×

−     

 An equation of normalizing skin conductance level (SCL) based on Mandryk    
 (  2008  ) . 

 Another bene fi t of this measure is the inexpensive hardware that usually comes 
at a fraction of the cost of a research-grade EEG setup. Many modern EDA systems 
use dry electrodes and some EDA setups for example allow quickly attaching the 
electrodes to the little and ring  fi nger with a Velcro strap. This makes EDA are very 
handy measure for game user research. 

 Analyzing SCL can be done in a macro (EDA over larger chunks of playtime) or 
micro fashion (GSR related to events). When analyzing the response to a direct event, 
one needs to take into account that EDA is a relatively noisy signal that also has some 
delay in response to a stimulus (often around 5 s). After a galvanic skin response is 
registered, there is also a decay or recovery time during which no further event responses 
will be registered (or the responses are registered together). In addition to this, EDA 
tends to drift over time, possibly a result of the hands or feet getting sweatier. A good 
way to make sure this drift does not affect the EDA data too much, is to make sure to 
have resting periods between different gameplay sessions. While it is pretty clear that 
EDA indicates physical arousal, there is still some interpretation effort required as to 
what this stimulation comes from. Is it really from a game stimulus or are environ-
mental factors contributing to the response? This is why planning and controlling phys-
iological experiments is very important. Possibly confounding factors, such as high 
physical activity, loud noise, caffeinated substances, bright light, and things moving in 
the background should be avoided at all costs when running a physiological study. 
Table  26.3  shows the pros and cons of the EDA physiological metric.    
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    26.4.5   Cardiovascular Measures 

 There are many cardiovascular measures available for physiological evaluation and all 
of them relate to the heart rhythm, its changes, and how this in fl uences the physiologi-
cal state of a human. The most common measures are electrocardiography (ECG), 
heart rate (HR), interbeat interval (IBI), heart rate variability (HRV), blood volume 
pulse (BVP), and blood pressure (BP). While physiological electrodes are necessary 
for all measures, blood pressure is not a real-time measure and also usually used in a 
medical context and has not been shown to be of relevance to game user research. 

 ECG measures the electrical activity caused by the heart pumping blood and is 
measured with three electrodes or leads, which are positive, negative and neutral 
and are usually applied to the upper body area. This can be considered a somewhat 
intrusive area for sensor placement depending on a participant’s comfort level. 

 Heart rate is understood as the number of heart beats per time unit (usually mea-
sured in beats per minute). The amount of heart beats during a time unit is an inter-
esting metric as is the time between the beats, the IBI. If IBI decreases, HR increases 
and this has been tied to increased information processing and emotional arousal. 
So, IBI and HR are two related measures. However, HR variability is a more com-
plicated measure with a complex analysis procedure. In HRV, we are looking at 
differences in the IBI over time and analyze frequency changes. In general, we need 
to keep in mind that cardiovascular measures are intrusive to measure accurately 
and they are affected by many things, such as physical activity. Table  26.4  shows the 
pros and cons of physiological cardiovascular measures.  

    26.4.6   Other Physiological Measures 

 There are a number of other physiological measures not covered in this introductory 
chapter, such as respiratory sensors, eye trackers, temperature sensors, and brain 
imaging techniques. Another chapter in this book deals with eye tracking techniques 

   Table 26.3    Pros and cons of measuring EDA   

 PRO  CON 

 Cheap hardware  Noisy signal 
 Easy to measure  Large individual variation 
 Easy to interpret  Baseline and response  fl uctuations 
 Less intrusive than other biosensors  Slow decay over time 

   Table 26.4    Pros and cons of cardiovascular measures   

 PRO  CON 

 Heart rate is easy to measure  Intrusive sensor 
 Heart rate hardware is cheap  Affected by many different things 
 Cardiovascular measures are established 

and prominent 
 Heart rate variability has a complex 

analysis procedure 
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in depth. And there is good other introductory literature available for this  fi eld 
(Duchowski  2007  )  as well. In addition, for more details on respiratory sensors and 
cardiovascular measures, other sources are available (Mandryk  2008  ) .    

    26.5   Case Study: Physiological Measures of Sonic Gameplay 
Experience 

 This case study explains an experiment I conducted together with colleagues during 
my Ph.D. studies and a part of which was published in the journal  Interacting with 
Computers  (Nacke et al.  2010  ) . Our initial research question behind this study was 
whether we can investigate the effects of sound and music in games on physiological 
measures and subjective measures of player experience. The research was con-
ducted using a modifi ed version of the fi rst person shooter  Half-Life 2  (Valve 
Corporation, Bellevue, WA, USA). The modifi ed level was designed for a playing 
time of 10 min. The game mod was played four times in different sound and music 
conditions. A fi rst-person shooter is an excellent environment to conduct this type 
of research, since gameplay is highly arousing and visceral, which we hoped to be 
likely to yield physiological responses. 

    26.5.1   Metrics Used in This Study 

 Facial electromyography (EMG) was used to record the activity from left orbicu-
laris oculi (eye), corrugator supercilii (brow), and zygomaticus major (cheek) mus-
cle regions using BioSemi fl at-type active electrodes with sintered Ag-AgCl (silver/
silver chloride) electrode pellets having a contact area 4 mm in diameter. The elec-
trodes were fi lled with low impedance highly conductive Signa electrode gel 
(Parker Laboratories, Inc., Hellendoorn, The Netherlands). The raw EMG signal 
was recorded with an ActiveTwo AD-box at a sample rate of 2 kHz and using 
ActiView acquisition software, and afterwards fi ltered in BESA (MEGIS GmbH, 
München, Germany) using a low cutoff fi lter (30 Hz; Type: forward, Slope: 
6 dB/oct) and a high cutoff fi lter (400 Hz; Type: zero phase, Slope: 48 dB/oct). 
Electrodermal activity (EDA) was measured using two passive Ag-AgCl (silver/
silver chloride) Nihon Kohden electrodes (1  m A, 512 Hz). The electrode pellets 
were fi lled with TD-246 skin conductance electrode paste (Med. Assoc. Inc., 
St. Albans, VT, USA) and attached to the thenar and hypothenar eminences of a 
participant’s left hand. EMG data were rectifi ed and exported together with EDA 
data at a sampling interval of 0.49 ms to  SPSS  (SPSS Inc., Chicago, IL, USA) for 
further analysis. Data were considered to be invalid when no signal was recorded for 
long periods (e.g., electrode fell off or equipment error). These data were excluded 
from further analysis: this was the case for seven participants. 
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 Different components of game experience were measured using the gameplay 
experience questionnaire GEQ. It combines several game-related subjective mea-
sures (with a total of 36 questions): immersion, tension, competence, fl ow, negative 
affect, positive affect and challenge. Each dimension has fi ve items (except immer-
sion which has six items). Each item consists of a statement on a fi ve-point scale 
ranging from 0 (not agreeing with the statement) to 4 (completely agreeing with the 
statement). Example statements are “I forgot everything around me” (Flow), “I was 
good at it” (Competence), “I felt that I could explore things” (Immersion), “I felt 
frustrated” (Tension), “I had to put a lot of effort into it” (Challenge), “I enjoyed it” 
(Positive Affect), and “I was distracted” (Negative Affect). The questionnaire was 
developed based on focus group research and subsequent survey studies (Cronbach’s 
alpha values ranged from .71 to .89 in the original study).  

    26.5.2   Experimental Design 

 We employed a 2 × 2 repeated-measures factorial design using sound (on and off) 
and music (on and off) as independent variables, using a counter-balanced order of 
sound and music game-level stimuli. Thus the conditions were: (1) Sound on, Music 
off, (2) Sound off, Music off, (3) Sound on, Music on, (4) Sound off, Music on. 
EMG and EDA responses were measured together with questionnaire items indicat-
ing the overall game experience for the different playing conditions. Questionnaire 
item order was randomized for each participant. 

 Data were recorded from 36 undergraduate students (66.7 %) and University 
employees. Their age ranged between 18 and 41 (M = 24, SD = 4.9). Gender was not 
evenly distributed, since only 19.4 % of all participants were female. All participants 
played digital games regularly, and 94.4 % reported they play games at least once a 
week. 94.4 % believed they had full hearing capacity. 41.7 % saw themselves as 
hobby musicians, while only 33.3 % played an instrument, which can be explained 
by people working with sound recording and programming but not playing an instru-
ment. All participants considered sound at least “somewhat important” in games. 

 Although Half-Life 2 allows the control of game audio features internally, sound 
and music were controlled externally for this experiment. For example, a music 
track was triggered externally, which was audible during playing and a software 
trigger controlled whether the game engine would play game sound or not.  

    26.5.3   Data Processing 

 We approached data processing in two different ways. First, we were investigating 
tonic or cumulative responses of the cumulative time period when playing the game 
in each of the condition, so after fi ltering and rectifying the signal, we compared 
the average values of each individual condition using inferential statistics. Second, 
we opted for an event-based analysis approach, where data was clustered 7 s around 
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player death events. We averaged seven 1-s means, 1 s before (baseline; Second 1) 
and 6 s after the event (the death of the player; Seconds 2–7). To normalize the 
distributions of physiological data a natural logarithm was taken from EDA and 
EMG signals. All data were analyzed in SPSS (SPSS Inc., Chicago, IL, USA) by 
the linear mixed model procedure with restricted maximum likelihood estimation 
and a fi rst-order autoregressive covariance structure for the residuals. Participant 
ID was specifi ed as the subject variable, while the game audio conditions (sound 
on/music off; sound off/music off; sound on/music on; sound off/music on), the 
sequence number of the event, and second (1–7) were specifi ed as the repeated 
variables. When examining the main effects of game events, the condition, sequence 
number of an event, and second were selected as factors, and a fi xed-effects model 
that included the main effects of these variables was specifi ed. When examining 
the interaction effects of condition and game events on physiological activity, 
the condition, sequence number of an event, and second were selected as factors, 
and a fi xed-effects model that included the main effects of these variables and the 
condition × second interaction was specifi ed. 

 Main effects of event-related changes in physiological activity were tested using 
the following contrasts:

    • Contrast 1 : baseline (Second 1) vs. response (Seconds 2–7).  
   • Contrast 2 : linear trend across Seconds 1–7.  
   • Contrast 3 : quadratic trend across Seconds 1–7.    

 Interactions were tested for both quadratic and linear trends. However, since the 
interaction contrasts with quadratic trends yielded no signifi cant associations, only 
those using linear trends are reported as follows:

    • Interaction Contrast 1a : sound vs. no sound × linear trend across Seconds 1–7. 
Interaction Contrast 1b: sound vs. no sound × change from baseline (Second 1 vs. 
Seconds 2–7).  
   • Interaction Contrast 2a : music vs. no music × linear trend across Seconds 1–7. 
Interaction Contrast 2b: sound vs. no sound × change from baseline (Second 1 vs. 
Seconds 2–7).  
   • Interaction Contrast 3a : both music and sound vs. neither × linear trend across 
Seconds 1–7. Interaction Contrast 3b: sound vs. no sound × change from baseline 
(Second 1 vs. Seconds 2–7).  
   • Interaction Contrast 4a : only music vs. only sound × linear trend across Seconds 
1–7. Interaction Contrast 4b: sound vs. no sound × change from baseline (Second 
1 vs. Seconds 2–7).     

    26.5.4   Some Findings from the Tonic Analysis 

 We used a two-way repeated-measures factorial analysis of variance (ANOVA) 
using sound and music as independent variables with two levels (on = audible or 
off = inaudible) and facial EMG (brow, eye, cheek), EDA, and GEQ dimensions as 
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dependent variables. Before the analysis, average values of psychophysiological 
measures were normalized using logarithmic transformation. Using the tonic data 
(in this context, we understand tonic as measured over a period of time albeit 
responding to an experimental condition) we tested signifi cant differences between 
the factors sound and music. We ran 2 × 2 ANOVAs for each EMG measure. The 
ANOVAs showed no statistical differences for EMG measurements. We have to 
assume that neither sound nor music, nor the interaction of sound and music, had a 
signifi cant accumulative effect on EMG measurement. No threshold values existed 
to classify EDA results as either activation or deactivation in the arousal dimension. 
Higher arousal values could indicate a more exciting experience in any of the condi-
tions. Using a 2 × 2 ANOVA, we tested the effects of the independent variables, as 
for the results of EMG, but no signifi cant cumulative effects were found. Thus, we 
assumed that neither sound nor music, nor the interaction of sound and music, had 
a signifi cant effect on EDA measurement. 

 For the questionnaire data, we tested the effects of sound and music with a 2 × 2 
ANOVA and found a main effect of sound on all seven dimensions of the GEQ and 
an interaction effect of sound and music on tension and fl ow. Absence or presence 
of sound infl uences all subjective GEQ dimensions, but we could further determine 
this effect by an interaction of tension and fl ow. The more positive dimensions of 
the GEQ (Flow, Positive Affect, Competence, Immersion, Challenge) were rated 
higher when the sound of the game was playing, while the more negative dimen-
sions (Negative Affect, Tension) were rated lower. When sound was turned off, we 
could see the opposite effect. Based on these subjective results, game sound is cru-
cial for a subjectively positive gameplay experience. 

 We also found an interaction of sound × music on the GEQ dimensions tension 
and fl ow. Flow was rated highest when sound was on and music was off, but received 
the lowest scores when everything was turned off. When sound and music were on, 
the fl ow rating was a slightly lower than in the sound on/music off condition. The 
experience ratings were even lower when sound was turned off and music remained 
on. Turning on non-diegetic music (that is music that does not directly relate to 
gameplay) seemed to dampen the fl ow experience (which    was more polarized in 
positive and negative dimensions) when the differences of sound were taken into 
account. Regarding tension ratings, when music was on and sound was on, tension 
was experienced lowest while when music was on and sound was off, tension was 
rated highest. There was not much difference when music was off.  

    26.5.5   Some Findings from the Event-Based Analysis 

 For the event-based analysis, we used a linear mixed model analysis procedure. We 
found that regardless of the condition, EMG activity for all investigated muscle 
areas (brow, eye, and cheek) presented a statistically signifi cant quadratic increase. 
In Condition 1 (sound on, music off), Contrast 1 (fi rst second vs. seconds 2–7) 
revealed that the response to a death event was a signifi cant increase in EMG  activity 
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for CS, OO, and ZM muscle areas (p < .001). Contrast 2, testing linear trend, was 
signifi cant for OO EMG activity (p = .003), but not for others. 

 Results of Contrast 3 showed that the trend was quadratic (fi rst rising and then 
declining) for all EMG activity measures (p < .001, see Fig.  26.8 ). This tendency was 
repeated in Condition 2 (both sound and music off), Condition 3 (both sound and 
music on), and Condition 4 (sound off, music on): Contrast 1 showed that the response 
was increasing in relation to the baseline second for EMG activity over all muscle 
areas (all p < .001), and Contrast 3 that the response was quadratic, that is, fi rst 
increasing but decreasing within 7 s (all p < .001). Contrast 2 yielded signifi cant 

  Fig. 26.8    Averages of EMG activity during each of the four conditions for cheek (ZM), eye (OO), 
and brow (CS) muscles       
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 associations in Condition 2, where sound and music were both turned off, for eye 
EMG (p < .001) and cheek EMG activity (p = .010), like it did in Condition 3, where 
both sound and music were turned on, (p < .001 and p = .007, respectively). In 
Condition 4 (sound off, music on) none of the Contrast 2 tests showed signifi cant 
associations. However, in all the cases where Contrast 2 was signifi cant suggesting 
linear trend, the t-value for contrast 3 was higher, revealing a trend that was predomi-
nantly quadratic. Thus, the results of Contrasts 2 and 3 together indicate that in the 
most cases, the response to the death event is not an increase in long-term EMG 
activity level, but rather a transitory peak in EMG activity. The response peaked 
around Second 3 or 4 in all conditions except Condition 1, where the peak occurred 
approximately 1 s later. In summary, no condition had an effect on the EMG responses 
elicited by the death event, since the response was signifi cant but similar in all 
conditions.  

 The main effects of death events on electrodermal activity showed less uniform 
responses. In Conditions 1 (sound on, music off) and 3 (sound on, music on), none 
of the contrasts revealed signifi cant trends; that is, there was no change from the 
baseline (fi rst second), no linear, and no quadratic trend in response to the event (see 
Fig.  26.9 ).  

 The trend for EDA in Condition 3 appears linear in visual inspection, but because 
the amount of death events in this condition was lower than in others and it did not 
quite reach statistical signifi cance (p = .064). 

 In Condition 2 (sound off, music off), both positive linear and negative quadratic 
trends (p = .023 and .013 for contrasts 2 and 3, respectively) were found, latter being 
stronger. Only Contrast 2 showed a signifi cant trend in Condition 4 (sound off, 
music on) (p = .031), revealing a linear increase in EDA as a response to the event. 

 We tested the interaction between the condition and linear trend of EDA over 7 s 
using contrast analyses. None of the interactions between condition and quadratic 
trends showed signifi cant associations. Whereas all interactions using linear and 
quadratic trend EMG activity were non-signifi cant, Interaction Contrasts 2b and 3b 
testing change from baseline (Second 1) to response (Seconds 2–7) showed that the 
brow EMG activity level rose in response to the death event more when music was 
on than when it was off (p = .018), and more when both music and sound were on vs. 
when they were both off (p = .017). 

 For EDA, Interaction Contrast 1a, testing the interaction of linear trend and the 
effect of sound vs. no sound, showed that the event prompted a greater linear 
increase when the sound was off compared to condition where the sound was on 
(regardless of music). That is, the participants responded with greater arousal to the 
death event when there were no sounds. Interaction Contrast 2a, testing the interac-
tion of linear trend and the effect of music vs. no music, similarly showed that the 
event prompted a greater linear increase (greater arousal) when the music was on, 
as compared to when music was off (regardless of sound). Interaction Contrast 3a 
was not signifi cant, suggesting that there was no difference in the EDA response 
whether both music and sound were on or off. Interaction Contrast 4a, testing the 
interaction of linear trend and the effect of only music vs. only sound, revealed that 
the event elicited a greater linear increase in EDA when music was on and sound 
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was off, compared to the opposite condition. Interaction Contrast 4b showed that 
this linear increase was also a signifi cant increase as compared to the baseline 
(Second 1; p = .021). In conclusion, the EDA response to the death event increased 
when the sound was off or music was on.  

    26.5.6   Takeaway from the Case Study 

 This case study demonstrates two different approaches to analyzing physiological 
data and the different the results that these types of analyses yield. For this particular 

  Fig. 26.9    EDA averages during each of the four conditions for cheek (ZM), eye (OO), and brow 
(CS) muscles. Note the different scales for each condition in the fi gure       
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study design regarding sound and music in games, we could take away that tonic 
effects (meaning effects that are measured throughout a game session) can be better 
gauged using questionnaires (which again emphasizes the importance of using 
mixed methods in Games User Research). For gameplay related events, in this case 
death events, physiological measures seem to provide some insights into short phys-
iological experience peaks that seem to occur 3–4s after an event onset. This is 
particularly interesting since we are currently moving toward mixed-method auto-
matic marker-driven analysis of physiological metrics and gameplay metrics. While 
the conditions did not yield a signifi cant response, the death event was meaningful 
to the gameplay in terms of its physiological response. The interpretation of 
 psychophysiological measures and data depends on the context and research 
 paradigm that is being followed. We should evaluate other statistical tests and a non-
linear analysis of the relationship between physiology and player experience in the 
future. For example, applying artifi cial neural networks to the analysis process 
might yield some more interesting relationships than the standard inferential tests 
used here. The interpretation of these measures in a gaming context requires more 
validation before we can ensure consistent results and guidelines useful to the indus-
try. One approach in this direction has recently been reported in a study by Mirza-
Babaei et al.  (  2013  ) , which addresses the usefulness of biometric measures in a 
games user research scenario and provides user testing guidelines for games user 
researchers interested in physiological measures.   

    26.6   How Can Physiological Metrics Be of Value to the Game 
Industry? 

 Given that this is only a brief introduction of psychophysiological measures for the 
game industry, we also have to discuss in which scenarios physiological game 
research is useful. Fairclough  (  2011a, b  )  suggested a thought experiment, where he 
outlines ten suggestions for improving the use physiological metrics in game user 
research. Many of these suggestions should be implemented by game user researchers 
for physiological metrics to work most effectively in an industry setting.

    • Physiological metrics can be recorded continuously during a game user 
research session without interrupting play.  This makes these methods supe-
rior to subjective measures that either break the experience (by interrupting and 
prompting with questions) or introduce memory bias (by asking questions about 
the game in retrospect). The only downside of physiological metrics is that the 
player has to wear sensors and that some might  fi nd this intrusive (although 
based on personal experience, many players forget that they wear sensors a few 
minutes into the game).  
   • A game user researcher interested in physiological assessment of players 
needs to be well-informed about what each sensor type measures.  Company 
executives and the marketing department need to understand this is no emotion 
quanti fi er or thought printer. Sensors measure electrical activity that comes from 
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motor, skin, or brain activity and depending on the area of application allows 
some conclusion of the activity of the body area being measured. This also means 
that we need an experience vocabulary working from a high level psychological 
concept (engagement) toward the low-level body response (sympathetic activa-
tion → higher heart rate). Inferences made from low-level body responses to high 
level concepts in comparison are always dif fi cult to withstand closer scienti fi c 
inspection.  
   • For capturing player experience, a hypothesis-driven approach is suggested , 
where only one particular aspect of experience is under investigation. Ideally this 
aspect is well-de fi ned in related literature so that, for example, we only investi-
gate positive and negative emotional responses to a certain game event or game 
area or that we investigate cognitive workload during a game tutorial.  
   • To establish a link between ideal player experience and the corresponding 
physiological responses, we should investigate responses to key aspects when 
naïve participants play the most successful games of the industry  (in terms of 
 fi nancial and critical success). If we could  fi nd out what physiological responses 
relate to the player experiences that drive the success of these games, we could 
work towards establishing a physiological success metric. This would be truly 
valuable for the game industry.  
   • In every aspect of physiological experimentation we need to be aware that 
the human body is still present in the real world while playing a video game.  
Our nervous system therefore responds to real-world stimulation coming from 
our environment as well as to cognitive stimulation. These contextual in fl uences 
(that may be overlooked during the screening of a participant) can result in 
changes in emotion or motivation during the experiment. In fl uences such as 
room temperature, movement, drugs, chemicals, noise, and many more can also 
introduce contextual bias into our interpretation of physiological activity. In the 
end, it is important to keep in mind how sensitive our nervous system really is 
when interpreting physiological metrics.  
   • Physiological metrics do not distinguish between physical activity and psy-
chological events.  Three components are involved in recording physiological 
metrics: external physical activity, internal emotional activity, and internal cogni-
tive activity (Stemmler et al.  2007  ) .  
   • Given what we now know about physiological responses, we will always 
have a certain signal-to-noise ratio in our physiological metrics.  We can 
counteract the amount of noise by enforcing a strict experimental protocol in a 
very controlled environment or by recording all possible confounds with addi-
tional sensors (e.g., temperature, noise, light) to remove their in fl uence during 
analysis.  
   • Before testing players, it is important to carefully record their demo-
graphic background , including their skill level and past game preferences and 
experiences. Novelty and habituation can impact physiological responses 
considerably.  
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   • It is important to create the different experimental conditions carefully  
within a systematically manipulated environment (e.g., a game engine). Ideally, 
we only change one variable at a time.  
   • Metrics should be tracked together.  Other gameplay tracking metrics can be 
considered overt behavior markers in the game world as they are visible instantly 
whereas physiological metrics are covert measures that are not always visible 
directly. Both metrics should be tracked together and a possible relationship 
between them should be explored using statistical analyses. Subjective responses 
are best recorded after physiological measurement.    

 We can conclude that psychophysiological measures in games should not be 
used alone, but always in conjunction with other measures to establish relationships 
between player experience and physiological responses. Much work remains to be 
done in this area before it becomes part of the everyday testing of game user 
researchers. However, given recent advances by sensor manufacturers, this technol-
ogy will eventually be more common in game user research. When we start using it 
to improve our games, we will always need to remember its sensitivity and the pos-
sible contextual in fl uences, so that all interpretations should be understood with a 
grain of salt.  

    26.7   Next Steps in Using Physiological Metrics 

 Imagine you would like to use these measures in your company, a good way to get 
started with most of them would be to consider that if you are measuring people, 
you always have to account for individual differences and you have to be very clear 
on your research goal. Can you obtain a result for your research question in an 
easier and more cost-effective way? If you answer is yes, then physiological mea-
sures might not be for you at this point. I would suggest the easiest way to get 
started with psychophysiological measures would be to obtain or build a system to 
measure electrodermal response, not only because it has a direct relationship to 
arousal or excitement, but also because this type of data can be easily processed 
and analyzed. We are currently working on methods to make the interpretation of 
electrodermal activity within a gaming context easier to interpret and more acces-
sible for the games industry (e.g., using biometric storyboards) (Mirza-Babaei 
 2011 ; Mirza-Babaei et al.  2012  ) . 

 Another option that we have worked with in the past and that we will continue 
working on in the future is building physiological measurement systems that track 
physiological metrics and player events together (Nacke et al.  2008 ; Kivikangas 
et al.  2011b  ) . For these systems, a few key issues have to be considered:

   Synchronized time data. Often the timestamp is used as the identi fi cation key to • 
merge different log data. If you are logging physiological data on a different 
system than your other metrics, make sure you timestamp is synchronized across 
the network.  
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  Data storage. Physiological log  fi les become large over time (similar to video • 
recording  fi les). It is a good idea to have a backup or extended storage solution 
in mind when starting to seriously collect physiological metrics data.  
  Choose the right gameplay hooks. Depending on your analysis, you will need to • 
make a decision what gameplay hooks are relevant in your log data to be related 
to physiological measures.  
  Set up a demo version of your game where players can focus on one action at a • 
time. This will make your psychophysiological analysis much easier since you 
are concentrating on one key variable.    

 If you plan to use more elaborate physiological metrics, such as EEG, an 
expert opinion is often helpful to get started. EEG is hard to interpret and there 
is still not enough evidence to show its usefulness for researching interesting 
game situations. In the end all the research needs to tie the ideas back to improv-
ing game design. EEG has a lot of potential to investigate meaningful decisions 
at certain key points in your game and once we have better signal processing and 
automated analysis techniques, it will likely see a larger adoption in the game 
industry. 

 This chapter might have shown to you that physiological evaluation is a  fi eld that 
requires some consideration and is not as simple just sticking a sensor on persons 
and getting precise emotional readouts of their activities. Therefore, I can only 
 recommend considering the goal of your game user research study before you 
decide on whether or not you can use sensors to solve your problem. Physiological 
sensors provide a great addition to other quantitative game metrics, because of their 
potential for adding emotional meaning to your data. If you want a complete and 
robust picture of the user experience when playing games, you should consider add-
ing physiological measures to your quantitative toolbox since they will provide rich 
evaluation possibilities over time.      
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