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Abstract— We introduce a statistical technique of inferring the
position of RFID tags by means of computation on multiple
data streams from distributed RFID receivers. Using a singt
statistical model that describes the detection rate betweetags
and receivers, we are able to perform Bayesian inference orhé
positions of the observed tags. If permitted by the receives, our

heterogenous environments.

« We provide active tracking capability. Our method allows

one to actively control the RFID readers to cooperatively
track a particular tag in order to speed up the inference
response time.

method can optimally coordinate the signal strength of muliple
receivers to improve the time response of our positional irdrence
system.

Our contributions are:

« A model based framework for spatial inference of RFID
tags is introduced using Bayesian inference.
. INTRODUCTION « The framework is generalized to work for RFID receivers

Radio frequency identification (RFID) technology has that do not provide signal strength information, but can

rapidly been adopted as an innovation in inventory manage- make use if the signal strengh information if it is avail-
ment. Most noticable success stories of RFID deployment able. ) . .
have been Walmart inventory tracking system [5], and arlin * '€ framework allows optimal active tracking by control-
baggage tracking systems [3]. RFID systems is seen as a ling multiple RFID receivers in a coordinated fashion.
standard componentin supply chain management [7], [1d], an I
is seen as a potential technology for many areas of apgitsati
121, [91. We are interested at the problem of inferring the spatial
The key feature offered by the RFID technolgy is itéocation of RFID tags by aggregating multiple data streams
ability to automate tagging individual items and senserthdl0m @ network of receivers. RFID technology comes in two
presence at key locations. For example, Gillete razors hd@gnilies: active and passive. In active RFID system, tags ar
been equipped with RFID tags [4], and thus tracks the saf@attery powered, and emit radio frequency signals. Active
in realtime in all point of sales that have receivers insthll RFID receivers simply pick up the radio signals and decode
The ability track individual items lies in the fact that RFIDthe digital data carried by the respective tag. The advastag
tags are extremely pervasive and can carry enough bitsOfoactive RFID systems are:
uniquely identify individual items. Furthermore, RFID oeas o The range of active RFID system is significantly larger
can simultaneously detect large number of RFID tags present than passive counter parts.
Despite the success, RFID technology presents challenges Active RFID tags can carry dynamic data such as tem-
when used for more complex monitoring beyond the simple perature readings.
presence-absence detection. Many researchers havefi@entHowever, the disadvantage of active RFID technology is that
and offered solutions to issues such as false reading [1d] aags are bulky, requiring battery pack, and are magnitudes
interference [2]. In this paper, we address the challenge @bre expensive than passive tags.
inferring spatial information of detected RFID tags by aggr |n passive RFID systems, receivers transmits an outgoing
gation of data streams from a network of RFID receivers. {adio signal which will excite the microscopic antenna a th
contrast to the existing localization methods [6], [1], ]18], passive tags. The passive RFID tags uses the radio signal
our Spa’[ial inference IEChnique offers the fOIIOWing feasu to power an onboard Ch|p and retransmit an echo Signa|
« We do not assume any special capabilities of the RFibat carries digital information. The advantage of passive
readers. Thus, our method applies to both active aRFID system is that tags are very pervasive and extremely
passive readers. It is not even necessary for the readi@expensive. However, the range of passive RFID systems is
to offer signal strength information. limited and the data carried by passive tags must be static.
« We do not assume any model of the signal interference.Common to both active and passive RFID systems, the
Our method is highly robust to even very noisy andeceivers can be configured to different power levels. For
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active receivers, one can change the sensitivity of itsrarte | 1 1S the set of tags.
thus effectively changing its range of coverage. For passiv | ¢ € T is a specific tag. -
receivers, one can set the power level of the outgoing aatenn | Xcai iS the set of calibration positions.
to achieve similar effect. Furthermore, many of the reasive | X € Xcaii is a specific location. .
make the signal strength of the detected tags availableeto th | D(t) is the event that tag is detected in the data
user. It is these two features of RFID receivers that allow | Stream. _ _
one to compute the spatial information of RFID tags. It is | R iS the set of receivers in the network.
important to note that some models of RFID receivers do | 2 € R is a specific receiver in the network.
not provide signal strength. Thus, one of our objective is P';(R) IS _the power level of receiveR.
to develop spatial inference techniques that work even when_s iS the signal strength.
signal strength is not available. Fig. 1. Notations used throughout the paper
A well-known practical issue with RFID deployment is
interference and obstruction of radio signals. Hetergenou
environmental obstructions can severely limit the detectf IV. M ODELED SPATIAL INFERENCE WITHOUT SIGNAL
tags by the receivers. From the perspective of spatialilal STRENGTH INFORMATION
tion, one must compensate for such spatial heterogene@ty duWe treating the detection of tags by receivers as a stochasti
to radio interference, reflection and obstruction. Our cfoije  process. The probability of detection is determined by the
is to adapt to such signal irregularities without user defingosition of the tags, the detecting receiver and its poweslle
models. Definition 1 (Statistical models)Given a tagt and a re-
ceiver R. If the receiver does not provide signal strength
data, then we assume that the detection of #dgllows a
Ill. RELATED WORK Bernoulli process, withw(R,x,L) = p(D(t)|R,x, L) to be
o _ the probability of detecting tag located at positiorx by the
The value of spatial information of RFID tags can rangg,cejverg given that the receiver’s power level is setltOR).

from being useful to being extremely valuable to being ab- Honote the model a#. Its model parameters are the set
solutely necessary [5], [2]. However, common RFID tags ar}g o constants.

receivers do not provide any spatial information. Thus, the
problem of localization and infering spatial informatioash O(M)={a(R,x,L): R€ R,x € X¢qi, L € PL(R)}
been the subject of research. As with all model based statistical methods, model param-
Ni et al described the LANDMARC [8] location sensingeter estimation is an important step towards inference. We
system for active RFIDs. Their system uses signal strength Pbtain the model parametet&\) by simple calibration. With
a set of rules to determine the location of active RFID tagaSSign an arbitrarily chosen set of calibration positiocigi,
Chen and Lee described how the similar rule-based appro@Mer the area of coverage. These points need not form a regula
can also be applied to WiFi networks [1]. Lee and Chen [ rid. We then place RFID tags at each position and monitor
also proposed a localization method for WiFi networks. witie data streams from all RFID receivers.
the knowledge of a predefined spatial model. Since active— —
RFID receivers act similarly to WiFi antennas, their modefe‘Tgorlthm 1 Calibration
based approach should also be applicable to active RFIf Initialize all entries ofCOUNT(:, -, -) < 0.
localization. Thiem et al [10] proposed a localization oflRF 2 for R € R do
tags in heterogeneous mesh networks. 3 for L € PL(R) do
Our work extends the existing localization method in seivera® Set power level off? to L.
ways. We do not explicitly assume any fixed model. By a> for i=1— N do
model, we mean a statistical model that describes the sign8i T —tags detected
characteristics as a function of spatial separation betwiee for ¢ € 7" do
receiver and the tag. The statistical model is obtained-autd™ x « position oft.
matically from the calibration phase, so no user knowledge i COUNT(x, R, L) = COUNT(x, R, L) + 1.

required to construct the model parameters. In our framlewor'® end for

localization is done by means of statistical inference, sb ntt end for

only do we infer the most likely position of the tag, but wel? a(x, R, L) = COUNT(x, R, L)/N.
actual obtain the likelihood of the tag at all known position ii: en?jnf%rfor

This is great if the user wishes to compute the kofikely
positions of a tag. Our work also naturally accomodates@acti
and passive tags using different statistical models. Kinal Algorithm 1 outlines the algorithm used to estimate the
within the formalism of Bayesian inference, we naturallynodel parameters. The algorithm instructs all receivers to
permit user-defined prior knowledge of where the tags shouddmple N times for each of its available power level. The
be found. probability of a tagt of being detected depends on the




position x of the tagt¢. This probability is estimated simply The termp(x) is the prior belief of where the tagshould
by counT(x, R, L)/N. It is worth noting that the calibration be. If the scenarios of warehouse tracking, the applicatiag
can be carried out concurrently by executing line 3 — line I#2ave some prior knowledge of where the tag must be, in which
in Algorithm 1 in separate parallel threads. More discussio case, during the inference, the user application may oallipn
on the implementation and experimental results on calimat setp(x) = 0 if it is for certain that tagt cannot possibly be
are presented in Section VII. at positionx. If no prior knowledge is available, thef{x) =
Given the model and its estimated parameters, we are abdastant = 1/|Xcail.
to perform statistical inference on the position of tagseldeasn The termp(N (R, L)|x) is the probability of the application
the observations from the network of RFID receivers. Duringceiving aN (R, L) samples from receiveR at power level
the spatial inference phase, we instruct each recéverR L. This is determined by the tracking strategy. The ran-
to continuously provides a stream of detected tags in tha fodom tracking algorithm (Algorithm 2) samples equal number

of: of readings from all power levels from all receivers, thus
receiver| power level| detected tags p(N(R, L)|x) = constant. Therefore, for random tracking,
A= . we get,
We refer to the tablel as theraw observations p(x|OBSERV)
The raw observations are collected distributedly from the _ CH B(D,(R, L)|N(R, L), a(x, R, L)) - p(x) (1)

RFID receivers. We refer to the observation phastraking

A simple random tracking algorithm is described in Algo- b
rithm 2. Equation 1 can be computed for each positorfrom the
aggregated observatiorBGeRV and the prior distribution. The
Algorithm 2 Uniform-Scan most likely positionx* is the one with the highest probability
The following is executed asynchronously at each regiven the observation:
ceiver. .
At receiver R: oo xlél%ii.ip (x|OBSERY) )

while Truedo

V. MODEL-BASED SPATIAL INFERENCE WITH SIGNAL
L — random power levet PL(R)

fori=1— M do STRENGTH
T — tags detected. Methods of calibration, tracking and inference can be gen-
report(R, L, T) as raw observation. eralized to take into consideration of signal strength.hi t
end for receiver provides the signal strength, then we assume that
end while the distribution of the signal strength follows a Gaussian

distribution. Thus,

Given a specific tag, in order to infer its most likely 1 (s — p)?
spatial position, we first aggregate the raw observationd in FD(t) = slx, R, L) = o221 P < 202 )
by counting total number of positive detectionstoénd the
total number of detections made, grouped by the receivets
their power levels, thus producing the following table.

receiver | power level | detections oft | total detections made

Juhere, ;. = u(x,R, L) ando = o(x, R, L).

The observations are of the formt = (R, L, {(¢i,s:)}),
where(t;, s;) are the detected tag ID and the signal strength
respectively.

B f h .l?t.(Rl’Ll) .A.f.(Rl’Ll) For eacht, let x be its location.
We denoteD; (R, L) to be the number of times that tachas > k.t SIGNAL(t)
been detected by receivét at power levelL, and N(R, L) p(x, R, L) = |{(]7%7L e Ayl
bower lovelr. Colloctvely, we refer (& Gata n (AblB 26 the (0
ower levelL. s _
gbservation, denoted by>FfQERV. o(x,R, L)% = 2p,4(SIGNAL ()" — p(x, R, L))
p(OBSERVx)p(x) (R, L,t) € A}|
P(x|OBSERY) = p(OBSERV) Note, x ando? are just the mean and variance of the observed
x p(OBSERVx)p(x), sincep(OBSERV) is a constant. signal strengths.
— H p(Di(R, L)|x, N(R, L))p(N (R, L)|x)p(x) We note that all receivers have some imprecisiofis, so
(R.L) a signal strength of actually represents a signal interval of

[s — As, s + As]. Let p(D(¢t) = s|x, R, L) be the probability
of observing signal strength when the location of the tag is
x and the receiveR is operating at power levdl.

H B(Di(R,L)|N(R, L), a(x, R, L))p(N (R, L)|x)p(x)
(R.L)

whereB is the Binomial distribution:

s+As

B(K|N,a) = ( g ) (1 —a)N K p(D(t) = s|x,R,L) = /_A~ f(D(t) = s|x, R, L)ds



If we assume that the receiver is high precision, Ae.< &, Algorithm 3 Active-Scan

then we can approximate the integral by The following is executed asynchronously at each re-
ceiver.
p(D(t) = s|x, R, L) ~ ¢ f(D(t) = s|u,0) At teceiver B
for some constant > 0. while True do
Applying Bayes’ rule as before, we obtain, for some other Design scanning strategy(L|R) for all L € PL(R)
c >0, for i=1— N do

[+ start the next epoch =*/

p(x|OBSERV) L « pick usingp(L|R).

= ¢ [[ (D) =SGNAL(t)|u o)p(R, L)p(x) (3) for i =1 — M do
(R, L.t) T «— tags detected.
Thus we can estimate the likelihood of the tag position from report(R, L,T) as raw observation.
the observations as before. end for
end for
VI. COORDINATION AND ACTIVE TRACKING end while

Using the methods in Section IV and Section V, one may
inferthe most likely spatial position of any given tag. Husg
the receivers work in an uncoordinated fashion by randomégtimated by Equation 1 or Equation 3 by substitutirig)
settings their respective power levels. While, the system with p(x|OBSERV). In both casesp’(x|OBSERV) is of the
stable in that it will always converge to the true positioform:
of the tag, the time response may be very slow, i.e. many
observations are needed for the estimateto converge. In p'(x|OBSERV) = ¢ H ax, r,LP(LIR)* "
this section, we show that one can dramatically improve the (L)
time response of the spatial inference algorithm by mea@gereay, ;, are constants, anid ;, are the number of distinct
intelligent tracking, i.e., control the power levels of inidual tags deleted by receive® at power levelL. The estimated

receivers in a cooperative fashion. entropy of the next epoch is given by:
The tracking strategy is characterized byR, L), i.e. the ) )
amount of scans allocated to receiver and power lév&ince H = «a ZP (x|OBSERV) log p(x|OBSERV)
X

each receiver gathers samples independently, the samples
allocated to each receiver is the same. Thus, we can write

= C2 ax,R,Lp(L|R)kR'L
p(R,L) = p(L|R) - p(R) = ¢ p(L|R) 2 (R,r,£>
One may think ofp(L|R) as the percentage of observations
to be collections at power levédl at receiverR. Z (log(ax,r.r) + kr,r logp(L|R))| (4)
Recall from information theory, the amount isfformation (R,L)

obtained by some action is measured as th? decreasgropy This allows us to obtain the optimal scanning strategy by
of the randomness before and after the action. In our saenarj

o ) X . solving the systems of equations:
the action is the collection ofV observations. We wish to Forgall recZiversR and ?heir ower levels PIR):
actively set the power levels usipgL|R) so that the resulting P ’

entropy is minimized, thus maximizing the information gain oH" 0 ()
We assume in each epoch of observation, we always collection Op(LIR)
N observations, and then compuytex|OBSERV). The active subject to: Z p(LIR) =1

tracking algorithm is shown in Algorithm 3. LePLiR)

Designing optimal scanning strategy One can verify that Equation 5 can be solved analytically

Given p(x|OBSERV), we can compute the entropy with closed form solutions. We omit the details due to space
limitation, and will defer the detailed derivations to the- e
H = - p(x|OBSERV) log p(x|OBSERV) tended version of this article.
X

In order to design the scanning strategl|R), we need VII. I MPLEMENTATION AND EXPERIMENTS

to estimate the spatial probability distribution for thexne To verify the performance of the spatial inference frame-
epoch. Letp(x|OBSERV) be the distribution after the previouswork presented Section IV-VI, we have setup four RFID
epoch, andp’(L|R) be the scanning strategy to be usedeceivers in our lab. The four receivers are wall mountetiat t
in the next epoch. Again B8ERV is all the observations four corners of the room as shown in Figure 3. They are also
collected since the beginning. Denqgi&x|OBSERV) as the connected to the central inference server via Ethernet LAN
distribution after the next epoch. Thesi(x|OBSERV) can be connection. The receivers report only deleted tags but not



Calibration Data for 192.168.1.203 at gain 0 Calibration Data for 192.168.1.203 at gain 14 Calibration Data for 192.168.1.203 at gain 23

=
(-3 o
o O o

(a) Probability over space at highest powb) Probability over space at mid-powés) Probability over space at low power level
level level

Fig. 2. The probability of detection across space of SowthtESE) receiver at different power levels.

their detected signal strength, thus we utilize the ste#ist
model described in Section IV which do not require signal
strength data. The individial power levels of each recedzsr
be remotely controlled by the inference server. Power level
is the strongest, while power levgl is the weakest.

A. Calibration

In order to obtain the model parametefs(x, R, L)} in
Equation 1, we perform calibration over a grid of spatial
positions that are irregularlly spaced apart shown in FEdr
A RFID tag is placed at each position, and the calibration
algorithm in Algorithm 1. For efficiency, we execute the main
loop in parallel.

Figure 4 show the change of detection rate of two different
tag by the same receiver at its different power levels. As
we can see that the detection rate drops as the power level
decreases. Note, however, due to interference and signasec
one may occasionally see increase of detection rate with
decreasing power level. The inference algorithm is insimesi
to these irregularities.

Figure 2 shows the detection rate over the lab room for a
particular receiver at three different power levels. We tbex,

at high power level (Left in Figure 2), there is a good coverag [ RFID Receiver
of the room, with certain dead spots of poor detection. At low < Spatial Point
power level (Right in Figure 2), the coverage shrinks only to

where the receiver is physically located. Again, due to the Fig. 3. Room layout

irregularity of the room, we see interesting patterns due to
reflection of radio signals. Our inference algorithm is retbu

to these types of irregularities. Active scan, in comparison, is must faster in its conver-
gence rate. In order to compare the converage rates numeri-
B. Inference cally, we calculate the entropsi of the inferred distribution

We compared the two inference algorithms: uniform scanx|OBSERV) each new observation received. As the inference
and active scan. Both scanning strategies always correalgorithm converges to the true tag location, the entrépy
converge to the true position of the tag of interest. Figuredpproaches.
shows the result of the inference algorithm after 200 oleserv Figure 6 shows the average entropy curves for active scan
tions using uniform scan. The algorithm correctly convergand uniform scan over multiple inference runs. For each in-
to the true location of the tag. Each observation takas25 ference run, both algorithms converge to the true tag lonati
seconds, so it tookO seconds for uniform scan to locate théNote that the active scan converges using only half the numbe
tag. of readings. Thus, with only 100 readings 25 seconds),
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Fig. 4. Probability of detection over different power levéor two different

receiversR; and Ry with respect to the same tag located at fixed position. 5%

Note Gain 0 corresponds the strongest power level while gainorresponds
the weakest power level.

using active scan, one is able to infer the location of the tag
of interest. 3

Entropy

VIIl. CONCLUSION AND FUTURE WORK

We have presented a statistical spatial inference franmewor il

to locate RFID tags using observations from a network of
distributed RFID receivers. By means of model parameter.
estimation, our spatial inference method is highly robuast t
irregularities due to radio frequency interferences andren-
mental obstructions. Furthermore, by actively contrgllthe
power levels of the RFID receivers, we are able to formulate
an optimal detection strategy which we refer to as dlotve
scan Active Scan is offers the maximal information gain with
the minimal number of observations, thus allows one to infer
the true location of the tags of interest with minimal numbeis3)
of observations.

We have conducted experiences using four RFID receiver[él},]

0

Fig. 5. after 200 observations.

Inference of a tag position

T
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Fig. 6. Performance of random tracking versus optimal tragk

Peter D. DeVries. The state of rfid for effective baggageking in the
airline industry. Int. J. Mob. Commun.6(2):151-164, 2008.
InformationWeek. Gillette razors get new edge: Rfid talgdormation-
Week, January 13, 2003 Issue.

and have demontrated the robustness and responsivenesgspfviad Krotov and Iris Junglas. Rfid as a disruptive innavat J. Theor.

our approach.

Currently, we are in the process of acquiring additional®
RFID receivers that have other interesting physical charac
teristics — tunable anntenas, available signal strengtfialvie
sampling rates. As future work, we plan to enrich our stiaast
models to take into account of these new controllable featur
of better RFID receivers. It is also interesting to investegthe
inference problem when we have a network of heterogeneo{%

RFID receivers.
[
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